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Abstract
Evaluating the impacts of trade policy through simulation can offer valuable insights, especially for
developing countries still confronting significant trade barriers. However, the credibility of these insights
might be compromised if the simulations depend on parameters derived from developed economies or are
constrained by ad-hoc assumptions within the literature. To quantify these implications, we focus on
Brazil as a case study, utilizing a Melitz-style model that facilitates sector-specific estimation of both
an upper-tier “home-foreign” macroelasticity and a lower-tier “foreign-foreign” microelasticity. While
66-77% of microelasticities surpass macroelasticities, the precision falls short in confirming the “rule
of two” — the assumption that the microelasticity is twice the macroelasticity. In a simulated trade
liberalization scenario, our findings show that welfare changes fall below those of models adhering to this
rule, yet exceed those of approaches overlooking differentiation between the two elasticities. Furthermore,
incorporating imperfect factor mobility results in more moderated predictions for welfare outcomes.
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JEL Classification: F14.

1 Introduction
Armington (or trade) elasticities are the cornerstones of any computable general equilibrium model (CGE)
of international economics. In the context of CGE models, these parameters reflect the extent to which
imported goods are substitutable between origins and dictate how consumers’ demand for goods produced
in different countries respond to relative-price changes. Even more interestingly, in several specifications,
trade elasticities govern not only consumer behavior but also directly affect firm-side variables (such as
markup-prices or market entry). As noted by Dixon and Jorgenson (2012), “it is no exaggeration to say that
(. . . ) [the trade elasticity] is the most important parameter in modern trade theory”.

Several studies indeed reveal that the predictions of CGE simulations are highly sensible to the values
assumed for Armington elasticities. For instance, by inputting different commonly reported estimates
for trade elasticities to a GTAPinGAMS model, Mc Daniel and Balistreri (2003) find that a unilateral
liberalization of trade in Colombia can lead to either gains or losses in welfare, depending on the values
adopted for the parameter. More recently, Bekkers et al. (2020) show that variations of 20% in upper- and
lower-tier elasticities assumed by GTM and GDYN models can lead to changes of up to 6% in the baseline
export values predicted by their simulations. Robustness checks conducted by Schürenberg-Frosch (2015) on
different types of CGE models provide further evidence on the relevance of the trade elasticity for the results
of these type of exercises.
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Despite the importance of this parameter for the reliability of CGE simulations, few studies adopt strategies
to tailor the magnitudes of inputted trade elasticities to the specificities of their analyses. Instead, most
exercises still employ elasticities “that are based on ‘guestimation’ or on estimates picked from the literature”
(Welsch, 2008). In addition, in many cases, it has also become common practice to calibrate the values
of these parameters by means of exogenous simplistic methodologies. For instance, in models with nested
preferences, there is a widespread use of the so called “rule of two”, where the values of upper-tier (or macro)
elasticities are simply tied to half of those assumed for the corresponding lower-tier (or micro) elasticities
(Hillberry and Hummels, 2013). Analyses that are more concerned with embedding estimated values for
their key parameters have only recently become more popular, with the emergence of the so called “New
Quantitative Trade Models”.1

In either case, plugging-in non-estimated values of trade elasticities to these simulations is risky, since external
parameters usually cannot reflect functionalities of the adopted models nor specificities of the countries and
sectors in which they focus. For instance, Wunderlich and Kohler (2018) use the CAPRI model to grasp the
impact of a free trade agreement between Switzerland and the EU and find that, depending on the sector, the
differences between the estimated changes in Swiss imports can vary from as low as -17.7% to as high +10.0%
when employing empirically estimated magnitudes for the elasticities instead of typical values picked from the
literature. In a similar exercise, Olekseyuk and Schürenberg-Frosch (2016) calculate the outcomes of a trade
liberalization policy in the Czech Republic using the GTAP model with self-estimated trade elasticities and
show that these are significantly different from the predictions of a baseline setup, that employs pre-defined
synthetic values for these parameters. According to the study, differences in predicted Czech imports could
range from -84% to +30% between the two setups, depending on the sector. In the case of CGE simulations
that focus on emerging economies, it is also likely that some of their published results suffer from these types
of inconsistencies. Although studies that explore these discrepancies are still scarce in such countries, the
data required for suitable estimations of Armington elasticities is frequently unavailable in these regions,
which has made the use of ad hoc estimates pervasive in most analyses.

In this work, we follow the model specification proposed by Feenstra et al. (2018) (hereafter FLOR) to
estimate Armington elasticities for 25 sectors of the Brazilian economy. The model’s general structure is that
of the seminal works of Melitz (2003) and Chaney (2008), in which consumers have typical Armington-like
preferences and heterogenous firms compete monopolistically in markets separated by iceberg and fixed-entry
costs. In their version of the model, FLOR introduce a system of nested CES preferences that allows macro
and micro trade elasticities to differ (with the former controlling substitution between domestic and imported
products and the latter ruling substitution between goods from different foreign suppliers). To construct our
general equilibrium model, which is used in numerical simulations of trade policy,we further enhance this
specification so as to accommodate intermediate goods, enable import tariff shocks and account for imperfect
mobility of factors of production.

Our work relates to other studies aimed at producing structural estimates for quantitative trade models
parameters, such as Broda and Weinstein (2006), Soderbery (2015, 2018) and Feenstra and Weinstein (2017).
We identify two major contributions of our analysis to this strand of the literature. First, we produce
structural estimates of both the micro and the macro Armington elasticities for different sectors of the
Brazilian economy. To the best of our knowledge, this is the first study to jointly estimate these parameters
for this economy at the sectoral level. Second, by allowing for import tariff shocks and accounting for
imperfect mobility of factors of production, we make the FLOR model more suitable numerical simulations
for answering real policy questions, especially those related to trade liberalization in emerging countries.
Several of these markets are still significantly closed, with Brazilian average import taxes being, for instance,
75% higher than those of economies of similar income.2 Although most models predict long run welfare gains
from the reduction of such barriers, most of these simulations rely on hypotheses of sustained reallocation of
factors, which have not historically been observed after liberalization movements in some of those regions
(Dix-Carneiro and Kovak, 2017).

The median and the cross-sector average of our estimates for the microelasticities are respectively 3.26 and
1See Bekkers (2017) for a discussion on this literature.
2In 2019, the average import tariff was of 7.66% in upper-middle-income countries and of 13.43% in Brazil. Data source:

https://data.worldbank.org/indicator/TM.TAX.MRCH.SM.AR.ZS.
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3.21. The most recent estimates of sectoral trade elasticities for Brazil were those of Barroso (2010), who
reports a cross-sector average for the microelasticities of 7.13. Soderbery (2018) finds a median of 2.85 and a
mean of 3.37 for Brazil’s microelasticities using a database at the 4 digit level of the Harmonized System
(HS). For the US, Broda and Weinstein (2006) reports a median of 3.1 and a mean of 12.6 for σ’s estimated
at the ten-digit Harmonized Tariff System (HTS), between 1990 and 2001.

Estimates for the macroelasticities are respectively of 2.24 and 3.92 under the two-Stage Least Squares
(2SLS) and the two-step generalized method of moments (2GMM) specifications. These figures are higher
than the sector-average reported by Tourinho et al. (2015), of 1.34, for similar sectors of the Brazilian
economy. Although between 65.8% and 77% of our σ’s lie above their corresponding ω’s, we can reject the
null hypothesis that ω ≤ σ for no more than 18.8% of the products. The “rule of two” is rejected for about
12% to 26.1% of the goods.

In a final exercise, we explored different parameter settings of the model to simulate the impacts of a complete
elimination of tariffs in Brazil. The changes in welfare depend highly on the assumed relationship between σ
and ω. For σ = ω, the impact on welfare is negative, whereas for ω = σ/2, the impacts are positive. Using
our estimates of ω and σ, we also find a positive impact on welfare, albeit smaller than with ω = σ/2. When
imposing imperfect mobility for production factors, the results tend to be smaller. Sectoral outcomes are
similarly highly sensitive to these parameters. For instance, the impact on the sectoral production of Textiles,
Wearing Apparel and Leather Products is 6.5 times greater if we assume σ = ω instead of using the estimates
found in this study.

The paper proceeds as follows. In section 2, we describe the FLOR model of international trade and our minor
extensions to its structure, namely, the introduction of intermediate goods, import tariffs, and imperfect
mobility of factors of production. In Section 3, we discuss FLOR’s approach for estimating the micro and the
macroelasticities. We briefly show how endogeneities arise from a mismatch between observed and theoretical
prices and how FLOR exploit a panel data model along with assumptions on the error terms of demand and
supply curves to mitigate these biases. In Section 4, we detail how we build our database. In Section 5, we
present our estimates for the micro and macroelasticities and simulate the results of a hypothetical policy of
tariff liberalization in Brazil using both our estimates and benchmark values for σ and ω. We conclude in
Section 6. Derivations and specific details about the simulations are relegated to the Appendices.

2 The model
Our model considers a world economy with J regions, G sectors, and F factors of production. The indexes i
and j are used to identify regions, the indexes g and k indicate sectors and the index f refers to factors of
production. The demand for goods is made up of intermediate consumption, which depicts input-output
linkages between sectors, and final consumption. The total demand of each region and each product is an
aggregation between goods of different regions according to the nested Armington structure presented in
FLOR. Additionally, the model considers that each sector is composed of heterogeneous firms in terms of
productivity and that there are fixed entry costs and fixed costs for trade between two regions based on
Melitz (2003). Each firm produces a variety under monopolistic competition. Finally, as Bekkers and Francois
(2018), we consider imperfect mobility of factors of production.

2.1 Demand for varieties
Given a total expenditure on goods of sector g by region j, V g

j , the allocation among the different regions
follows a nested Armington structure in line with FLOR. At the first level, the total expenditure is divided
between expenditure on domestic and imported goods. CES preferences are assumed with elasticity of
substitution ωg

j . This parameter is called the macroelasticity and governs the rate of substitution between
domestic and imported goods for relative price changes. Given this system of preferences, the expenditure on
domestic and imported goods are

V g
jj = βg

jj

(
P g

jj

P g
j

)1−ωg
j

V g
j , (1)
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V g
Fj

= βg
Fj

(
P g

Fj

P g
j

)1−ωg
j

V g
j , (2)

where V g
jj and V g

Fj
are, respectively, the expenditures on domestic and imported goods of sector g by region j,

βg
jj and βg

Fj
are preference parameters, P g

jj and PFj are the price indexes of the composite goods of domestic
and imported varieties, and P g

j is the price index of the composite good that combines domestic and imported
varieties.

At the second level, the expenditure on imported varieties is an aggregation of the expenditure in goods
from all possible sources of imports. We once again consider CES preferences, but now with an elasticity of
substitution σg

j . This parameter, known as the microelasticity, governs the rate of substitution between the
different sources of imports. The expenditure on goods from each source i ̸= j is therefore given by

V g
ij = κg

ij

(
P g

ij

P g
Fj

)1−σg
j

V g
Fj

, (3)

where V g
ij is the expenditure on goods from sector g exported by region i to region j, κg

ij is a preference
parameter, and P g

ij is the price index of the composite good of varieties of sector g exported by region i to
region j.

Lastly, the representative consumer has also CES preferences over varieties supplied by each region and sector.
As in FLOR, the same elasticity of substitution for the second level, σg

j , is assumed. There is a mass of
varieties supplied to region j by region i, Ng

ij , which is endogenously defined. Each variety is indexed by φ.
Given an expenditure Vij , the demand for each variety,3 cg

ij(φ), is

cg
ij(φ) =

[
pg

ij(φ)
P g

ij

]−σg
j V g

ij

P g
ij

, (4)

where cg
ij(φ) is the demand for the variety φ from sector g supplied by region i to market j, pg

ij(φ) is the
tariff-inclusive price paid by consumer. Equation (4) is important because it defines the demand curve faced
by a firm producing a variety φ to be sold to destination j.

The price index of the composite goods of domestic and imported varieties is

P g
j =

[
βg

jj(P g
jj)1−ωg

j + βg
Fj

(P g
Fj

)1−ωg
j

] 1
1−ω

g
j , (5)

the price index of the composite good of imported varieties is

P g
Fj

=

 J∑
i=1,i̸=j

κg
ij(P g

ij)1−σg
j

 1
1−σ

g
j

, (6)

and the bilateral price index of the composite good of sector g varieties sold by region i to region j is

P g
ij =

{∫
Ng

ij

[
pg

ij(φ)
]1−σg

j dφ

} 1
1−σ

g
j

=
{

Ng
ij

[
pg

ij(φ̃g
ij)
]1−σg

j

} 1
1−σ

g
j ,

(7)

where Ng
ij is the mass of firms from sector g in region i that export to region j, pg

ij(φ) is the consumer price
of the good exported by a firm with productivity φ and pg

ij(φ̃g
ij) is the consumer price of the average variety

conditional on entry into destination j. The consumer price and the productivity of the average firm are
defined in the next subsections.

3Note that the quantity consumed is net of iceberg costs. In the presence of iceberg costs, τg
ij ≥ 1, the producer exports a

quantity τg
ijcg

ij(φ) so that the consumer effectively consumes the quantity cg
ij(φ).
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2.2 Production
In each sector, there is a continuum of firms with heterogeneous productivities. As in Melitz (2003), a firm in
region i and sector g pays a fixed entry cost, fE,g

i , to get a productivity drawn, φ, from a distribution Gg
i (φ).

Usually, it is assumed that the productivities follow a Pareto distribution, i.e., Gg
i (φ) = 1 − φ−γg

i , where
γg

i > 0. In addition, a firm of region i and sector g has to pay a fixed cost, fg
ij , to export to region j. In order

to produce a variety, a firm uses input bundles that combine materials (input-output linkages) and primary
factors of production (labor and capital). The fixed costs are also measured in units of input bundles.4

The production of input bundles in each sector has a Cobb-Douglas technology. Thus, the unit cost for the
input bundles produced in sector g of region i, zg

i , can be computed as:

zg
i = Υg

i

Ag
i

F∏
f=1

wg,f
i

γg,f
i

G∏
k=1

P k
i

γg,k
i , (8)

where
∑F

f=1 γg,f
i +

∑G
k=1 γg,k

i = 1, Υg
i is a constant term,5 Ag

i is the sector-specific (common) productivity
level in sector g of region i, P k

i is the price of composite good k used as material in region i, wg,f
i is the price

of factor f in region i used in sector g and γg,f
i is a technology parameter that measures the share of the

production factor f in the total output value of sector g in region i. Similarly, γg,k
i measures the share of

input k in the total output value of sector g in region i.

2.2.1 Profit Maximization

The firm productivity level affects the required quantity of input bundles to produce its variety. A firm with
productivity φ in country i exporting to country g needs yg

ij(φ) units of input bundles:

yg
ij(φ) =

τg
ijcg

ij(φ)
φ

+ fg
ij , (9)

where τg
ijcg

ij(φ) is the exported quantity.6 In the presence of fixed costs, a firm in region i and sector g
demands additional fg

ij units of the input bundles in order to export to region j.

A firm in region i and sector g sets a price that maximizes its profit in supplying goods to region j. The firm
problem is:

πg
ij(φ) = max

pg
ij

(φ)≥0

{
pg

ij(φ)
1 + tg

ij

cg
ij(φ) − zg

i

φ
τg

ijcg
ij(φ) + zg

i fg
ij

}
, (10)

subject to Equation (4). Note that the firm revenue, pg
ij

(φ)
1+tg

ij
cg

ij , is net-of-tariffs, where tg
ij is the tariff applied

by country j to varieties of sector g from region i. Solving this problem, the optimal price of the firm with
productivity φ is

pg
ij(φ)

1 + tg
ig

=
σg

j

σg
j − 1

τg
ijzg

i

φ
. (11)

Note that pg
ij

(φ)
1+tg

ig
defined in the Equation (11) is the optimal producer price, gross of iceberg trade costs.

4Caliendo et al. (2023) consider that the fixed costs are measured in units of labor. Akgul et al. (2016) use different setups
for the input bundles of their fixed and variable costs, deriving fixed costs solely from the value added by factors of production,
where only value added is used in fixed cost bundles. Bekkers and Francois (2018) consider the same input bundles for fixed and
variables costs. We stick with the Bekkers and Francois (2018) specification.

5Υg
i ≡
∏F

f=1 γg,f
i

−γ
g,f
i
∏G

k=1 γg,k
i

−γ
g,k
i .

6This quantity is gross of iceberg trade costs.
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2.3 Selection and Entry
In each region and sector, there are a mass of firms Mg

i operating and a mass of firms Ng
ij (Ng

ij ≤ Mg
i )

exporting to a destination j. In the presence of fixed costs, not all firms are profitable in all markets. Only
firms with variable profit equal to or greater than fixed export costs will export to a given market. Thus,
there is a productivity level φg∗

ij in which only firms with the same or higher level will export to a specific
market. As presented in Melitz (2003), the zero cutoff productivity condition is given by:

zg
i fij =

r(φg∗
ij )

σg
j

, (12)

where r(φg∗
ij ) = pg

ij(φg∗
ij )cg

ij(φg∗
ij )/(1 + tg

ij) is the revenue of the marginal firm from region i of sector g that is
exporting to region j. This condition defines the mass of operating firms Ng

ij on the i − j link. Additionally,
as in Balistreri and Rutherford (2013), it is interesting to define this condition in terms of the average
(CES-weighted) productivity level conditional on entry, φ̃g

ij :

φ̃g
ij =

[
1

1 − G(φg∗
ij )

∫ ∞

φg∗
ij

φσj
g−1g(φ)dφ

] 1
σ

g
j

−1

. (13)

Considering the Pareto distribution with parameter γg
i , we have that

φ̃g
ij =

[
γg

i

γg
i + 1 − σg

j

] 1
σ

g
j

−1

φg∗
ij . (14)

Applying the optimal price in the revenue formula it is possible to show that

r(φ̃g
ij)

r(φg∗
ij )

=
(

φ̃g
ij

φg∗
ij

)σg
j

−1

. (15)

Using Equations (14) and (15), the condition of zero cutoff productivity in Equation (12) is rewritten as

zg
i fij =

pg
ij(φ̃g

ij)cg
ij(φ̃g

ij)
1 + tg

ij

γg
i + 1 − σg

j

γg
i σg

j

. (16)

Given that only firms from region i and sector g with productivity level above φg∗
ij will export to region j, we

have that 1 − G(φg∗
ij ) = Ng

ig/Mg
i . Again, using the Pareto distribution, the average productivity level defined

in Equation (14) can be rewritten as

φ̃g
ij =

[
γg

i

γg
i + 1 − σg

j

] 1
σ

g
j

−1
(

Ng
ij

Mg
i

)− 1
γ

g
i

. (17)

Finally, the free entry condition is used to determine the mass of operating firms, Mg
i . According to Melitz

(2003) and also detailed in Balistreri and Rutherford (2013), an entering firm in region i and sector g has to
pay a fixed cost zg

i fE,g
i to operate. This payment is made only once. After the firm discovers its productivity,

it can decide to produce or immediately exit and not produce. A firm that decides to produce is subject
to a bad shock with δ probability in each period that will force its exit from the market. In steady-state,
the mass of firms that exit the market as a result of this shock is δMg

i and the total payment is zg
i fE,g

i δMg
i .

Individually for a firm, the expenditure per period to cover fixed entry costs is equal to zg
i fE,g

i δ. Firms will
enter the market until the expected profit is equal to the fixed cost payment.

The average firm in region i and sector g has the following profit at each destination market j:

πg
ij(φ̃g

ij) =
pg

ij(φ̃g
ij)cg

ij(φ̃g
ij)

(1 + tg
ij)σg

j

− zg
i fg

ij . (18)
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Substituting the fixed costs using Equation (16) and considering the fact that the probability of a firm
operating on each link is equal to Ng

ij/Mg
i , the free entry condition is given by

zg
i fE,g

i δ =
N∑

j=1

pg
ij(φ̃g

ij)cg
ij(φ̃g

ij)
1 + tg

ij

σg
j − 1
γg

i σg
j

Ng
ij

Mg
i

. (19)

2.4 Expenditure
In Subsection 2.1, the demand for varieties was defined given a value of total expenditure by region and
sector. Here, we define how this expenditure is generated. There are two main blocks: the representative
households that characterize the domestic absorption of each region and the intermediate demand. Domestic
absorption represents household consumption, gross investment, and government consumption. Intermediate
demand represents the expenditure of performing activities on inputs.

Households In each region there is a representative household that maximizes its utility given Cobb-Douglas
preferences and a budget constraint. The household problem is:

U(C1
i , ..., CG

i ) = max
{Cg

n}G
g=1

G∏
g=1

Cg
i

αg
i , where

G∑
g=1

αg
i = 1

s.t.
G∑

g=1
P g

i Cg
i ≤ Ii.

(20)

The variable Cg
i is the final consumption of the composite good g in region i, αg

i is a preference parameter,
P g

i is the price index of the composite good g in region i and Ii is the total income in region i. Similar to
Caliendo and Parro (2015), the total income7 in each region is the sum of payments to production factors,
total tariff revenue and a trade deficit (or surplus). Formally,

Ii =
G∑

g=1

F∑
f=1

wg,f
i Lg,f

i + TRi + Di, (21)

where wg,f
i is the price of the production factor f used in sector g of region j, Lg,f

i is the quantity of the
factor f used in sector g of region j, TRi is the total tariff revenue in region i, and Di is the deficit (surplus)
of region i.

Given the household problem, the final expenditure on goods from sector g by region j, V g,hh
i , is:

V g,hh
i = αg

i Ii. (22)

Intermediate Expenditure The total production of the input bundle in sector k in region i is denoted
by Y k

i . Additionally, considering the Cobb-Douglas technology, the input-output coefficients, γk,g
i , and that

input bundle production value is equal to zk
i Y k

i , we have that the intermediate expenditure on goods of sector
g in region i, V g,int

i , is given by

V g,int
i =

G∑
k=1

γk,g
i zk

i Y k
i . (23)

Thus, total expenditure is
V g

i = V g,hh
i + V g,int

i . (24)

7The real income is given by Ii/P hh
i , where P hh

i =
∏G

g=1

(
P

g
i

α
g
i

)α
g
i

.
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2.5 Factor Markets
Our model consider F production factors. Usually, it is assumed a perfect mobility of the production
factors between sectors of a specific region. As a result, the price of each factor in each region is uniform.
However, Bekkers and Francois (2018) argue that multi-sector models with scale effects are subject to corner
solutions and infinitely large effects. Strategies employed in the literature to mitigate this issue include
adopting imperfect mobility for production factors, assuming macroelasticities to have lower values than
microelasticities and adjustments to the input-output coefficients. The model already allows ω < σ, and we
also allow the case of imperfect mobility for production factors.8 We follow Bekkers and Francois (2018) and
use a constant elasticity of transformation structure to define the supply of factors in different sectors. In the
case of Brazil, the imperfect mobility hypothesis seems to be reasonable given the evidence of Dix-Carneiro
and Kovak (2017). More recently, imperfect mobility has also been used in a quantitative dynamic trade
model presented in Caliendo et al. (2019).

Given a stock Lf
i of the production factor f in the region i and assuming a constant elasticity of transformation

θf
i , the factor supply lgf

i in each sector is given by

lgf
i = λgf

i

(
wgf

i

w̄f
i

)θf
i

Lf
i , (25)

where λgf
i is a share parameter, wgf

i is the price of factor f in sector g of region i, w̄f
i is the price index of

factor f in region i. This price index is calculated as

w̄f
i =

G∑
g=1

[
λgf

i (wgf
i )1+θf

i

] 1
1+θ

f
i . (26)

2.6 Market Clearing
To complete the model, it is necessary to establish the equilibrium conditions for the markets of input bundles
and production factors. For the input bundle, there are three sources of uses: use for fixed input costs, use
for fixed costs for operation in each bilateral link, and use for variable production. Thus, the equilibrium
condition of this market is given by

Y g
i = Mg

i fE,g
i δ +

N∑
j=1

Ng
ij

(
fg

ij +
τg

ijcg
ij(φ̃g

ij)
φ̃g

ij

)
(27)

For the factor market, the equilibrium price is the one that equalizes the supply and demand of each factor
in each sector. Again, considering the Cobb-Douglas production technology, the equilibrium condition is as
follows

lgf
i = γgf

i zg
i Y g

i

wgf
i

. (28)

3 Estimation
It is often not possible to map the price indexes available in standard databases to those defined by economic
theory. In the case of our model, an exact translation of practical price indexes (or unit values) to our
CES-like price aggregators would imply gathering data on very specific demand- and supply-side variables,
such as taste parameters and quantities of available varieties. Unfortunately, since we cannot access demand
and supply curves in practical contexts (but only equilibrium prices and quantities) these variables are seldom
observable. To estimate σ̂ and ω̂ without directly observing our model’s price-indexes, we follow FLOR and
employ an estimation technique that leverages a series of interconnected moment conditions. These moments

8In the numerical simulations, we also adjust the input-output coefficients, following the approach used in Balistreri et al.
(2011) and Costinot and Rodríguez-Clare (2014).
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arise from theoretical assumptions about the independence of demand and supply curves, which allow us to
eliminate the unobservable terms in our model’s CES-like price-index.

More formally, consider that panel data is available for expenditures on domestic and imported goods (V gt
jj ,

V gt
Fj

, V gt
ij ) and for the corresponding unit values of these products (UV gt

jj , UV gt
Fj

, UV gt
ij ).

Combining Equations (1), (2) and (3), we can write the ratio between country j’s expenditures on imported
goods from origin i and those on domestic goods as:

V g
ij

V g
jj

= κg
ij

(
βg

Fj

βg
jj

)(
P g

ij

P g
Fj

)1−σg
j
(

P g
Fj

P g
jj

)1−ωg
j

. (29)

Although we may be tempted to promptly estimate Equation (29), we should note that data on the price
indexes is unavailable, since these measures are merely theoretical constructs from our model. Instead, we
must rely on unit values (UV gt

jj , UV gt
Fj

, UV gt
ij ) to serve as imperfect proxies for P gt

jj , P gt
Fj

and P gt
ij .

To understand how these measures relate, we follow FLOR and assume that the unit value UV gt
ij generally

reflects a consumption-weighted average of prices (of the varieties of good g sold by region i to region j).
Using Equations (4) and (11), we can write this weighted average as:9

UV gt
ij =

∫ ∞

−∞
pgt

ij (φ)

 cgt
ij (φ)∫∞

φ∗gt
ij

cgt
ij dGg

i (φ)

 dGg
i (φ)

=
(γg

i − σg
j )

(γg
i − σg

j + 1)pgt
ij (φ∗gt

ij ).

(30)

Taking the ratio between the current and previous unit values of g to eliminate some terms, we get:

UV gt
ij

UV gt−1
ij

=
(1 + tgt

ij )τgt
ij

(1 + tgt−1
ij )τgt−1

ij

(
zgt

i

zgt−1
i

)(
φ∗gt−1

ij

φ∗gt
ij

)

=
(1 + tgt

ij )τgt
ij

(1 + tgt−1
ij )τgt−1

ij

(
zgt

i

zgt−1
i

)(
Ngt

ij Mgt−1
ij

Ngt−1
ij Mgt

ij

) 1
γ

g
i

,

(31)

where the first and second equalities follow directly from Equations (11) and from the assumption that
1 − G(φ∗) = Ng

ig/Mg
i , with φ∗ ∼ Pareto(0, γg

i ).

Following similar steps, we can use Equations (7), (11) and (17) to achieve an analogous expression for the
CES-like price indexes defined in our model:

P gt
ij

P gt−1
ij

=
(

Ngt
ij

Ngt−1
ij

) 1
1−σ

g
j (1 + tgt

ij )τgt
ij

(1 + tgt−1
ij )τgt−1

ij

(
zgt

i

zgt−1
i

)(
φ̃gt−1

ij

φ̃gt
ij

)

=
(

Ngt
ij

Ngt−1
ij

) 1
1−σ

g
j (1 + tgt

ij )τgt
ij

(1 + tgt−1
ij )τgt−1

ij

(
zgt

i

zgt−1
i

)(
Ngt

ij Mgt−1
ij

Ngt−1
ij Mgt

ij

) 1
γ

g
i

.

(32)

Contrasting Equations (31) and (32), we get:

UV gt
ij

UV gt−1
ij

=
(

Ngt
ij

Ngt−1
ij

) 1
σ

g
j

−1 P gt
ij

P gt−1
ij

. (33)

9See details in Appendix A.1.
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Equation (33) shows that, although the price index of good g (as defined in our theoretical model) is related
to its observable unit value, these two measures are not equivalent. The mismatch between the two variables
even survives the elimination of constants that we achieve by taking ratios of current and lagged values of
UV gt

ij and P gt
ij . More importantly, Equation (33) reveals that this difference directly depends on the number

of available varieties in each period (Ngt
ij ), a variable that we seldom observe.

Aggregating P gt
ij and UV gt

ij (for i ̸= j) into Sato-Vartia indexes, we can establish an analogous relation
between a CES-like price index for imported varieties, P gt

Fj
, and its unit value counterpart, UV gt

Fj
. In Appendix

A.2 we show that the relation between the one-period changes of these indexes is given by

UV gt
Fj

UV gt−1
Fj

=
(

P gt
Fj

P gt−1
Fj

)(
κgt

Fj
Ngt

Fj

κgt−1
Fj

Ngt−1
Fj

) 1
σ

g
j

−1

(34)

where
κgt

Fj

κgt−1
Fj

=
∏J

i=1, i ̸=j

(
κgt

ij

κgt−1
ij

)wgt
ij

,
Ngt

Fj

Ngt−1
Fj

=
∏J

i=1, i ̸=j

(
Ngt

ij

Ngt−1
ij

)wgt
ij

and wgt
ij are Sato-Vartia weights.

As in the case of UV gt
ij and P gt

ij , Equation (34) shows that the one-period changes for the CES-like price
indexes also differ from those of the unit values, since the UV gt

Fj
’s are unable to correct for unobservable

shocks in taste or changes in product variety.

Using Equations (33) and (34) we can now rewrite Equation (29) in terms of its observable and unobservable
terms as

∆ ln
(

V gt
ij

V gt
jj

)
= −(σg

j − 1)∆ ln
(

UV gt
ij

UV gt
Fj

)
+ (1 − ωg

j )∆ ln
(

UV gt
Fj

UV gt
jj

)
+ εgt

ij ,

i = 1, ..., J, i ̸= j, t = 2, ..., T,

(35)

where ∆ ln denotes log-changes and εgt
ij is the unobservable error term, given by

εgt
ij = ∆ ln

(
κgt

ij

κgt
Fj

)
+ ∆ ln

(
Ngt

ij

Ngt
Fj

)
+ ∆ ln

(
βg

Fj

βg
jj

)
−

(1 − ωg
j )

(σg
j − 1) ∆ ln

(
κgt

Fj
Ngt

Fj

Ngt
jj

)
. (36)

Estimates for the micro- and macroelasticities obtained directly from Equation (35) are expected to be biased,
since the changes in unit-values are likely correlated with the variables swept under the error term εgt

ij . As
noted by FLOR, for instance, a positive shock in the taste coefficient for goods imported by j from trade
partner i (κgt

ij ) would directly affect wages in country i, pushing UV gt
ij up. Changes in product varieties

introduce an additional source of bias, since the ranges Ngt
ij are endogenously determined by our model while

they also affect the relation between true price indexes and unit values (see Equations (33) and (34)).

To mitigate these biases, FLOR propose a methodology that aims at exploiting moment conditions constructed
from the error terms of both structural demand equations and reduced form supply curves. In summary,
the approach consists of three main steps, which involve separating the micro and macro demand curves,
synthesizing their corresponding reduced form supply curves, and estimating their coefficients from moment
conditions that arise from combining the error terms of those demand and supply equations. For this last
step, FLOR leverages the panel structure of the data and rely on the hypothesized independence between the
residuals of these curves across pooled observations. This general procedure is similar for the estimation of
both the micro- and the macroelasticity.

We briefly describe each of these steps in the next three subsections.

3.1 Isolating micro and macro structural demand curves
With some algebraic manipulation of our previous expressions, we can construct demand equations that
depend uniquely on either the micro or the macroelasticity.
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Micro demand curve To isolate the micro demand curve, we sum across Equation (35), for i ≠ j, and take
the difference between this result and the original equation (see Appendix A.3 for details). This operation
cancels out the term that depends on ωg

j and leaves us with

∆ ln
(

UV gt
ij

UV gt
Fj

)
= − 1

(σg
j − 1)∆ ln

(
V gt

ij

V gt
Fj

)
+ εgt

iF

(σg
j − 1) , (37)

where

εgt
iF = ∆ ln

(
κgt

ij

κgt
Fj

)
+ ∆ ln

(
Ngt

ij

Ngt
Fj

)
.

Macro demand curve To obtain the macro demand curve, we combine Equations (2) and (3) and again
sum across trade partners i ̸= j. Assuming ωg

j = ωj for a group of products g = 1...Gs within each sector s,
we get (see Appendix A.4):

∆ ln
(

UV gt
Fj

UV gt
jj

)
= − 1

(ωj − 1)∆ ln
(

V gt
Fj

V gt
jj

)
+ 1

(ωj − 1)εgt
Fj

(38)

with

εgt
Fj

= ∆ ln
(

βgt
Fj

βgt
jj

)
+
(

ωj − 1
σg

j − 1

)[
∆ ln κgt

Fj
+ ∆ ln

(
Ngt

Fj

Ngt
jj

)]
.

The negative signs on the right-hand side (RHS) of Equations (37) and (38) indicate that we should expect
a negative correlation between the log-differences of unit values and those of expenditures. We therefore
interpret these two expressions as structural demand curves.

3.2 Synthesizing the corresponding reduced form supply curves
To produce consistent estimates for σg

j and ωg
j , FLOR derive auxiliary supply equations, with error terms

that are deemed orthogonal to those of their corresponding demand curves.

Micro supply curve To this end, and for the case of the micro supply curve, we start by synthetically
drawing a linear projection of ∆ ln

(
UV gt

ij /UV gt
Fj

)
onto the error term of the micro demand curve, εgt

iF /(σg
j −1),

to get:

∆ ln
(

UV gt
ij

UV gt
Fj

)
= ρg

1j

(
εgt

iF

σg
j − 1

)
+ δgt

iF . (39)

In other words, for a given destination j and product g, we choose ρg
1j so as to guarantee that the residuals

δgt
iF and εgt

iF are uncorrelated with each other (across all i ̸= j). Thus, by construction, we have:∑
t

∑
i=1, i ̸=j

εgt
iF δgt

iF = 0.

This assumption is however insufficient to generate the moments required for a proper estimation of the
microelasticities. Note that since we choose a single ρg

1j for all trade partners of destination j, the synthetic
construction of Equation (39) does not guarantee independence between δgt

iF and εgt
iF for each i, but only for

all origins taken collectively. The method proposed by FLOR requires a stronger assumption, in which the
orthogonality between these residuals hold in expectation for every trade partner of j, such that:

E

[∑
t

εgt
iF δgt

iF

]
= 0, for all i ̸= j. (40)
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FLOR suggest that this stricter assumption holds by first claiming that Equation (39) can be interpreted as
a reduced form (micro) supply curve. This interpretation is then used to produce an additional theoretical
argument about the independence between the errors εgt

iF and the residuals of the micro demand curve, δgt
iF .

To show that Equation (39) can indeed be interpreted as a supply curve, FLOR note that a positive shock
on εgt

iF (i.e., a relative taste or variety shock on a good imported from i) is expected to generate positive
responses both on ∆ ln

(
UV gt

ij /UV gt
Fj

)
and ∆ ln

(
V gt

ij /V gt
Fj

)
. In other words, Equation (39) provides a positive

connection, through εgt
iF , between relative unit values and relative expenditures, and we should thus expect

0 < ρg
1j < 1.

Relying on the supply-side nature of Equation (39) makes the theoretical argument about the independence
between εgt

iF and δgt
iF straightforward. Since shifts on the supply and demand curves are usually believed to

be caused by unrelated sources, FLOR argue that the unobservable variables comprised in the error terms
of these curves must also be influenced by uncorrelated factors. In a subsequent step, FLOR exploit this
independence between εgt

iF and δgt
iF , along with the panel structure of their database, to generate the necessary

moment conditions for estimating the microelasticity.

Macro supply curve A similar argument can be made to produce analogous moments for the estimation
of the macroelasticity. Starting from Equation (38), we can draw a linear projection of ∆ ln

(
UV gt

Fj
/UV gt

jj

)
on the residual εgt

Fj
/(ωj − 1) to get:

∆ ln
(

UV gt
Fj

UV gt
jj

)
= ρFj

(
εgt

Fj

ωj − 1

)
+ δgt

Fj
, (41)

for g = 1...Gs (where we again assume ωg
j = ωj for all goods of a given sector s).

Again, by construction, we know that εgt
Fj

and δgt
Fj

are orthogonal for all goods taken collectively, but not
individually for each good. In other words, the synthetical fabrication of the residuals δgt

Fj
does not guarantee

that:

E

[∑
t

εgt
Fj

δgt
Fj

]
= 0, for all g ∈ {1. . . Gs}. (42)

As before, we need this latter stronger condition to hold (at this time for producing the estimates for the
macroelasticities), so we once more resort to the theoretical argument about the independence of the residuals
of demand and supply curves. In this case, we note that positive changes on εgt

Fj
(caused by either variety, taste

or preference shocks) will likely generate positive responses both on ∆ ln
(

UV gt
Fj

/UV gt
jj

)
and ∆ ln

(
V gt

Fj
/V gt

jj

)
,

so that 0 < ρFj
< 1. Thus, and again following FLOR, we conclude that we can regard Equation (41) as a

macro supply curve and that we should therefore expect its residuals δgt
Fj

to be orthogonal to those of the
macro demand curve (Equation 38) for each g ∈ {1. . . Gs}.

3.3 Leveraging the panel structure of the data to generate 2SLS and 2GMM
estimates for σg

j and ωj

Equations (40) and (42) provide us with J − 1 and Gs moment conditions, respectively, that can be used to
produce consistent estimates for the micro and macroelasticities.

Estimating the microelasticities For the case of the microelasticity, starting from Equations (37) and
(39), we can multiply the error terms εgt

iF and δgt
iF to get:

Y gt
iF = θg

1Xgt
1iF + θg

2Xgt
2iF + ugt

iF , (43)
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where

Y gt
iF =

[
∆ ln

(
UV gt

ij

UV gt
Fj

)]2

, Xgt
1iF =

[
∆ ln

(
V gt

ij

V gt
Fj

)]2

, Xgt
2iF =

[
∆ ln

(
UV gt

ij

UV gt
Fj

)][
∆ ln

(
V gt

ij

V gt
Fj

)]
,

θg
1 =

ρg
1j

(σg
j − 1)2(1 − ρg

1j) , θg
2 =

(2ρg
1j − 1)

(σg
j − 1)(1 − ρg

1j)

and
ugt

iF = εgt
iF δgt

iF

(σg
j − 1)(1 − ρg

1j) .

Notice that Equation (40) guarantees E
[∑

t ugt
iF

]
= 0 for all foreign trade partners. Thus, if we pool Equation

(43) over source-countries and sum the resulting groups across time (i.e., over t, for each T g
i ) we get a system

of equations with residuals that conveniently sum to zero in expectation for origins i ̸= j.

A straightforward way to achieve this sort of pooling is to use source-country dummies as exogenous
instrumental variables (IVs) and estimate Equation (43) with two-stage least squares (2SLS):

θ̂
g
2SLS =

[(
X̂g

1S

)T
X̂g

1S

]−1 (
X̂g

1S

)T
Yg, (44)

where
X̂g

1S = Zg
[
(Zg)T Zg

]−1
(Zg)T Xg, (45)

and Zg denote the matrix of source-country indicator variables. In Appendix A.5 we show that the estimates
θ̂

g
2SLS indeed converge asymptotically to the true θg of Equation (43) if E

[∑
t ugt

iF

]
= 0 for all i ̸= j (i.e., if

the assumption in Equation (40) holds).

In addition, Feenstra (1991) shows that we need an extra assumption on the variances of εgt
iF and δgt

iF to
avoid collinearity between the observations of X̂g

1S, so as to retrieve separable estimates for θ̂
g
1 and θ̂

g
2. More

specifically, there should be enough heteroscedasticity between the error terms of the demand and supply
curves so as to guarantee that:10

σ2
εi

σ2
εj

̸=
σ2

δi

σ2
δj

, (46)

where σ2
εi

and σ2
δi

are the variances of εgt
iF and δgt

iF .

With θ̂
g
1 and θ̂

g
2, we can then achieve structural estimates for σg

j and ρg
1j by solving the quadratic equations

that arise from the definition of these parameters in Equation (43).

Note that since J is typically greater than 2 (the number of regressors Xgt
kiF in Equation (43)), we expect

our system of equations to be overidentified. We can therefore take advantage of the conventional weighting
procedures of the generalized method of moments to improve the efficiency of the 2SLS estimator θ̂

g
2SLS.

To this end, we first construct the optimal feasible weighting matrix Ŝg from the variances of the residuals
between Yg and Ŷg

2SLS, so that:
Ŝg = (Zg)T diag

(
ûg_sqd

2SLS

)
Zg,

where diag
[
ûg_sqd

2SLS

]
is the diagonal matrix of the squared residuals

(
ûgt

iF

)2, such that ûgt
iF = Y gt

iF − θ̂g
1Xgt

1iF −
θ̂g

2Xgt
2iF .

In a second step, we weight Yg and Xg by the inverse of Ŝg (so as to emphasize observations that are more
adherent to our model) and re-estimate θg from this new weighted version of Equation (43). Referring back

10See Appendix A.6 for details.
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to Equation (44), we can therefore write this new 2GMM estimates of θ in matrix form as:11

θ̂
g
2GMM =

[
(Xg)T Zg

(
Ŝg
)−1

(Zg)T Xg
]−1

(Xg)T Zg
(

Ŝg
)−1

(Zg)T Yg. (47)

Estimating the macroelasticities To produce analogous estimates for the macroelasticity, we repeat
these exact same steps and, once again, start by multiplying the error terms of the macro demand and supply
curves εgt

Fj
and δgt

Fj
(see Equations (37) and (39)) to get:

Y gt
Fj

= θg
1Xgt

1Fj
+ θg

2Xgt
2Fj

+ ugt
iF , (48)

where

Y gt
Fj

=
[

∆ ln
(

UV gt
Fj

UV gt
jj

)]2

, Xgt
1Fj

=
[

∆ ln
(

V gt
Fj

V gt
jj

)]2

, Xgt
2Fj

=
[

∆ ln
(

UV gt
Fj

UV gt
jj

)][
∆ ln

(
V gt

Fj

V gt
jj

)]
,

ϕ1 = ρF j

(ω − 1)2(1 − ρF j) , ϕ2 = (2ρF j − 1)
(ω − 1)(1 − ρF j)

and

ugt
Fj

=
εgt

Fj
δgt

Fj

(ω − 1)(1 − ρF j) .

From Equation (42), we know that the residuals ugt
Fj

should sum to zero in expectation over t within each
group of goods. To pool Equation (48) accordingly, we use the same IV-based approach as before, but at this
time define our instruments as indicator variables for each g ∈ {1. . . Gs}.

Consistency of ϕ̂
g
2SLS and ϕ̂

g
2GMM is guaranteed by the assumption on the independence between the

residuals of the macro demand and supply curves (Equation (42)) along with an additional condition on the
heteroscedasticity of εgt

Fj
and δgt

Fj
. Although we do not formally show how convergence occurs in this case, the

intuition behind the validity of ϕ̂
g
2SLS and ϕ̂

g
2GMM under these conditions is exactly the same as that for the

estimates of the microelasticity (see Appendices (A.5) and (A.6)).

3.4 Adding an extra set of moment conditions
FLOR point out that, with simulated data, the 2GMM estimates obtained from Equation (48) converge very
slowly to the true values of ω. In addition, when carried out with US data, these estimations fail to converge
for some sectors.

To tackle these issues, FLOR construct an additional set of moment conditions for the estimation of the
macroelasticity. These moments are obtained via the same procedure described in the previous subsections,
with steps that again involve isolating a macro demand curve, synthesizing a corresponding reduced-form
supply curve, and creating a structural equation with residuals that conveniently cancel out in expectation
when pooled properly.

11To see that Equation (47) is equivalent to a simple estimation of Equation (44) weighted by the inverse of the estimated
residuals ûgt

iF , notice that we can rewrite the expression for the 2GMM estimates as:

θ̂
g
2GMM =

{
(Xg)T Zg

[
(Zg)T diag

(
ûg_sqd

2SLS

)
Zg
]−1

(Zg)T Xg
}−1

(Xg)T Zg
[
(Zg)T diag

(
ûg_sqd

2SLS

)
Zg
]−1

(Zg)T Yg ={
(Xg)T Zg

[
(Zg)T diag

(
ûg

2SLS

)
diag

(
ûg

2SLS

)
Zg
]−1

(Zg)T Xg
}−1

(Xg)T Zg
[
(Zg)T diag

(
ûg

2SLS

)
diag

(
ûg

2SLS

)
Zg
]−1

(Zg)T Yg =[(
X̂g

(1/û)

)T
X̂g

(1/û)

]−1 (
X̂g

(1/û)

)T
Yg

(1/û)
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Following FLOR, we start by rewriting Equation (35) with the microelasticities fixed to σ̂g
j , taken as given:

∆ ln
(

V gt
ij

V gt
jj

)
= −(ωj − 1)∆ ln

(
UV gt

Fj

UV gt
jj

)
− (σ̂g

j − 1)∆ ln
(

UV gt
ij

UV gt
Fj

)
+ εgt

ij ,

i = 1, ..., J, i ̸= j, t = 2, ..., T.

(49)

where we still consider ωg
j = ωj for goods of the same sector s and σ̂g

j are those estimated in Subsection 3.3.

Note that this expression is very similar to Equation (38) (in that the macroelasticities ωj control the inverse
relation between relative expenditures and relative unit values), so we can also regard Equation (49) as macro
demand curve. Reorganizing the terms to isolate ∆ ln

(
UV gt

ij /UV gt
Fj

)
, we get:

∆ ln
(

UV gt
ij

UV gt
Fj

)
= − 1

(σ̂g
j − 1)∆ ln

(
V gt

ij

V gt
jj

)
− (ωj − 1)

(σ̂g
j − 1)∆ ln

(
UV gt

Fj

UV gt
jj

)
+

εgt
ij

(σ̂g
j − 1) .

Proceeding as before, if we synthetically project ∆ ln
(

UV gt
ij /UV gt

Fj

)
onto the two terms in the RHS that are

not explicitly linked to import values we get:

∆ ln
(

UV gt
ij

UV gt
Fj

)
= ρ̂g

1j

εgt
ij

(σ̂g
j − 1) − ρg

2j

(ωj − 1)
(σ̂g

j − 1)∆ ln
(

UV gt
Fj

UV gt
jj

)
+ δgt

ij . (50)

where the coefficients ρ̂g
1j are those estimated with Equation (43).

Note that as with our prior projections, the term to the left-hand side (LHS) is expected to be positively
influenced by shocks in the terms to the RHS, so we once again expect our synthetic coefficient in the RHS
(ρg

2j) to be greater than 0.12 From Equation (49), it also directly follows that the terms εgt
ij /(σ̂g

j − 1) and
−
[
(ωj − 1)/(σ̂g

j − 1)
]

∆ ln
(

UV gt
Fj

/UV gt
jj

)
are both positively correlated with ∆ ln

(
V gt

ij /V gt
jj

)
. Thus, as before,

we can interpret Equation (50) as a macro supply equation, in that it establishes a positive relation between rel-
ative unit values ∆ ln

(
UV gt

ij /UV gt
Fj

)
and the terms εgt

ij /(σ̂g
j −1) and −

[
(ωj − 1)/(σ̂g

j − 1)
]

∆ ln
(

UV gt
Fj

/UV gt
jj

)
,

which are direct components of the relative expenditures ∆ ln
(
V gt

ij /V gt
jj

)
.

Therefore, once again we can apply our previous assumption about the independence of error terms of demand
and supply curves, at this time to Equations (49) and (50). As before, if we assume that this assumption
holds, the residuals εgt

ij and δgt
ij must be uncorrelated in expectation across all observations for each trade

partner i ̸= j, that is:

E

(∑
t

εgt
ij δgt

ij

)
= 0, for all i = 1...J, i ̸= j. (51)

Multiplying Equations (49) and (50), we once more end up with a structural equation with error terms ugt
ij

that conveniently sum to zero if correctly pooled over trade partners i ̸= j:

Y gt
iF = θg

1Xgt
1ij + θg

2Xgt
2ij + (ωj − 1)

(
θg

3Xgt
3ij + θg

4Xgt
4ij

)
+ (ωj − 1)2θg

5Xgt
5ij + ugt

ij (52)
12With regards to the second term, notice that we should expect the relative unilateral unit values to decrease following a

positive shock in the multilateral relative unit values ∆ ln
(

UV gt
Fj

/UV gt
jj

)
. As for the components of εgt

ij , the intuition behind

the positive correlations between changes in ∆ ln
(

UV gt
ij /UV gt

Fj

)
and variety or taste shocks follows from the same arguments

presented in the previous subsections.
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where

Y gt
iF =

[
∆ ln

(
UV gt

ij

UV gt
Fj

)]2

, Xgt
1ij =

[
∆ ln

(
V gt

ij

V gt
jj

)]2

, Xgt
2ij =

[
∆ ln

(
UV gt

ij

UV gt
Fj

)][
∆ ln

(
V gt

ij

V gt
jj

)]
,

Xgt
3ij =

[
∆ ln

(
UV gt

Fj

UV gt
jj

)][
∆ ln

(
UV gt

ij

UV gt
Fj

)]
, Xgt

4ij =
[

∆ ln
(

UV gt
Fj

UV gt
jj

)][
∆ ln

(
V gt

ij

V gt
jj

)]
, Xgt

5j =
[

∆ ln
(

UV gt
Fj

UV gt
jj

)]2

,

θg
1 =

ρ̂g
1j

(σ̂g
j − 1)2(1 − ρ̂g

1j) , θg
2 =

(2ρ̂g
1j − 1)

(σ̂g
j − 1)(1 − ρ̂g

1j) , θg
3 =

−(1 + ρg
2j − 2ρ̂g

1j)
(σ̂g

j − 1)(1 − ρ̂g
1j) ,

θg
4 =

−(ρg
2j − 2ρ̂g

1j)
(σ̂g

j − 1)2(1 − ρ̂g
1j) , θg

5 =
−(ρg

2j − ρ̂g
1j)

(σ̂g
j − 1)2(1 − ρ̂g

1j) ,

and

ugt
ij =

εgt
ij δgt

ij

(1 − ρ̂g
1j)(σ̂g

j − 1) .

In Appendix A.7 we show that the set of moment conditions that arise from Equation (51) adds extra
information to those generated with our previous pair of demand and supply curves (Equations (40) and
(42)).

One minor caveat is that, differently from our estimates for the microelasticity, we do not retrieve our
structural parameters from solving a system of equations on the estimated coefficients θ̂g

i . Instead, we obtain
ω̂j and ρ̂g

2j directly, by first stacking the values for Y gt
Fj/iF and X̂gt

1S in Equations (52) and (48) and then
running a non-linear-least-squares estimation over this complete set of observations.13

4 Data
To estimate micro and macroelasticities we need data on domestic consumption and imports for a set of
goods of interest. Consumption of goods produced domestically is estimated by subtracting exports from
total production for each product. Production data is sourced from two surveys administered by the Brazilian
Institute of Geography and Statistics (IBGE): the Annual Industrial Survey - Product (PIA-Produto), and
the Municipal Agricultural Production Survey (PAM). The PIA-Produto covers industrial products, while
the PAM covers agricultural products.

For the PIA-Produto survey, data from 2005 to 2013 are originally available in the Prodlist 2013 classification,
while data from 2014 to 2019 are coded according to newer versions of the Prodlist standard.14 Using IBGE’s
correspondence tables,15 we convert data for all years to Prodlist 2013.16 In an effort to enhance the reliability
of calculated prices, we discard products that had responses from fewer than three firms.

We obtain import and export data for Brazil from the Brazilian Foreign Trade Secretariat (SECEX). The
database is detailed by the Mercosur Common Nomenclature (NCM) code,17 by country of origin (exporter)
and by year. We employ CIF import values, FOB export values, and imported/exported quantities in the
analysis. Since our model contemplates tariffs, all import values are gross of tariffs. Tariff data for Brazil at
the NCM level is obtained from the World Integrated Trade Solution (WITS).

Production and trade data are in different classifications and needed to be made compatible with each other.
For agricultural products, we manually mapped PAM products with the correlation between agricultural
products and NCM codes available in the Agrostat system of the Ministry of Agriculture of Brazil.18 For

13As in FLOR, we also add a constant term to this specification to control for possible measurement errors in Y gt
iF .

14More specifically, data from 2014 to 2016 follow Prodlist 2016 and data from 2017 to 2019 adhere to Prodlist 2019.
15The correspondence tables are available at: https://concla.ibge.gov.br/classificacoes/correspondencias/produtos.html.
16Only products with 1-to-1 or 1-to-n associations between classifications were kept. Associations of type 1-to-n allow products

to be aggregated into Prodlist 2013 using their disaggregated codes from Prodlist 2016 and 2019.
17In this classification, each product is identified by an 8-digit numerical code.
18https://indicadores.agricultura.gov.br/agrostat/index.htm.
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industrial products, we used the correspondence table between the NCM and the Prodlist classifications
provided by IBGE.19

An additional difficulty in matching data is imposed by the periodic revisions of the Harmonized System
(HS) of International Trade, which impact the NCM classification. Since correlation tables are available for
the Prodlist 2013 and the NCM 2012 classifications, it was necessary to match the NCM 2012 classification
with all such revisions from 2005 to 2019. This was done through the use of correlation tables.20 We kept
only products for which these correlation tables allowed either a 1-to-1 or a 1-to-n association between their
Prodlist and NCM classifications. The remaining products were discarded, since we could not uncover the
exact matches between these two classifications through the available correlation tables. A detailed summary
of the data processing and exclusions by sector can be found in Appendix B.

Further, we standardized the units of measurement between production and trade data. Products that
could not be directly matched due to differences in their units of measurement were discarded. Following
this standardization, we directly calculated unit values from traded or produced values, along with their
corresponding quantities. To reconcile the values between the trade database, denominated in USD, and
the production database, expressed in Brazilian Reais, we utilized the PTAX exchange rate data from the
Brazilian Central Bank.

Table 1 presents the descriptive statistics of the data used in the estimation of the micro and macroelasticities.
Our final database covers the period between 2005 and 2019 and is composed of more than 1000 products
distributed in 25 sectors.21,22 The sectors with the highest number of products are Chemicals Products, and
Machinery and Equipment (n.e.c.). The average number of suppliers (exporters) per product went up from
19 to 23 between 2005 and 2019. There was also also an increase in the average penetration rate of imports.
Data used to produce our estimates covers approximately 43% and 40% of total merchandise imports in
Brazil in 2005 and 2019.

To calibrate the model used in the simulation exercise of Subsection 5.2 we use 2014 data from the World
Input-Output Database (WIOD). Tariffs for all countries in this database are collected from the Market
Access Map System (MAcMap).

19The Prodlist and NCM correspondences tables are also available at: https://concla.ibge.gov.br/classificacoes/
correspondencias/produtos.html.

20The correlation tables are available at: http://www.comexresponde.gov.br/portalmdic/sitio/interna/interna.php?area=5&
menu=3361 and https://www.gov.br/produtividade-e-comercio-exterior/pt-br/subjects/camex/trade-strategy/tariffs/common-
external-tariff.

21The database has data for 1246 products. However, not all products have information for all years. As a result, the total
number of products varies between 2005 and 2019.

22Manufactured goods are allocated to sectors using the first two digits of the Prodlist code. All agricultural products are
aggregated into the same sector.
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Table 1: Descriptive statistics.

2005 2019
Sector Number of

Goods
Mean

Number of
Exporters

Mean of Imp.
Penetration

Ratio

Total Imp.
(BRL Million)

Number of
Goods

Mean
Number of
Exporters

Mean of Imp.
Penetration

Ratio

Total Imp.
(BRL Million)

Crop and Animal Production 15 6.40 21.28 3120.22 15 6.40 22.52 10376.02
Oil and Gas 1 11.00 66.03 19072.29 1 7.00 16.95 18992.92
Mining Extraction (Metal Ores) 6 8.00 22.45 1236.81 3 6.33 17.34 2982.25
Mining Extraction (Other) 18 9.72 26.83 504.93 17 13.41 32.29 1365.35
Food Products 67 8.28 14.20 1874.63 76 12.14 16.96 9654.59
Beverages and Tobacco 11 8.55 16.07 1028.06 12 20.92 29.33 5139.95
Textiles 60 17.78 15.25 1965.34 60 19.57 30.27 9065.33
Wearing Apparel 26 20.27 8.04 136.62 29 26.83 20.69 2338.89
Leather and Footwear 7 17.14 15.36 91.43 6 15.83 29.29 53.91
Wood Products 9 13.33 10.62 52.38 11 16.91 25.33 227.04
Paper and Paper Products 20 12.25 9.62 1134.38 20 12.70 5.28 1036.58
Printing and Reproduction of Recorded Media - - - - 1 42.00 9.43 36.59
Coke and Refined Petroleum Products 7 9.29 36.82 1588.85 10 10.50 28.97 3817.04
Chemical Products 226 16.15 31.40 18338.77 249 20.02 41.63 93337.89
Pharmaceuticals and Medicinal Chemical Products 5 13.80 52.27 130.49 4 14.00 62.36 1310.44
Rubber and Plastic Products 36 27.89 26.61 2689.15 35 35.69 33.08 10576.83
Non-metallic Mineral Products 48 17.35 18.05 1241.75 50 21.38 30.56 4601.75
Basic Metals 37 18.73 15.89 2919.52 47 22.51 25.41 19596.47
Fabricated metal products 68 21.22 17.58 2314.38 66 26.30 31.38 10499.97
Computer and Electronic Products 59 29.73 44.29 7005.14 67 37.94 58.62 49378.70
Electrical Equipment 73 32.56 37.14 4969.93 70 39.73 46.77 23482.31
Machinery and Equipment (n.e.c) 153 19.88 36.86 10491.50 149 23.52 43.06 32711.04
Motor Vehicles, Trailers, and Semi-trailers 18 16.78 16.02 3991.85 20 24.75 27.44 18460.00
Other Transport Equipment 6 9.83 20.44 107.25 6 12.67 13.69 528.85
Other Manufacturing 32 19.84 33.73 929.70 37 23.00 46.96 5762.31
Total 1008 18.83 27.11 86935.38 1061 23.15 36.21 335333.00

Note: Exporter means country of origin. The import penetration rate is calculated as total imports in relation to total consumption. The number of exporters and the
penetration rate of imports are calculated for each good and the average is calculated for all the goods in each sector.
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5 Results
5.1 2SLS and 2GMM estimates for σg and ω

Table 2 shows the 2SLS and 2GMM estimates for the microelasticities. Point estimates reflect the median of
σ̂g for 1140 goods, grouped into 25 sectors of the Brazilian economy. It is common practice in the literature
to restrict the non-linear optimization problem that arise from estimating σ̂ to a closed set of parameters that
are consistent with theory.23 Instead, and in line with FLOR, we opt to simply discard 106 goods (from our
original set of 1246 products) for which we obtain σ̂g < 0 for more than 75% of 1000 bootstrap replications
performed initially. As in FLOR, 95% confidence intervals are constructed by means of a nested bootstrap
procedure.24

2GMM estimates are expected to be more efficient than those of standard two-stage-least-squares, so we
consider the former as our preferred results. Table 2 shows that the average of the medians of each sector is
3.21. This figure is lower than the cross-sector average found by Barroso (2010), of 7.13, for similar sectors
of the Brazilian economy.25 Our estimate is also lower than those of benchmark estimates used as default
parameters in general-purpose CGE-models. Cross-sector averages of assumed microelasticities are of 4.08 in
version 10 of the GTAP database26 (Aguiar et al., 2019) and of 4.34 in the multi-sector, heterogenous-firm
trade model proposed by Caliendo et al. (2023).27

The overall median of σ̂g is of 3.26, which is close to that reported by FLOR (3.2) and Broda and Weinstein
(2006) (3.1) for US sectors. Figure 1 shows the Kernel densities for the 2SLS and 2GMM estimates along
with their lower and upper 95% confidence intervals. Unlike in FLOR, the two densities are quite similar and
do not show the efficiency gains that are expected from the 2GMM approach.

Estimates for the macroelasticities are reported in Table 3. Unstacked estimates for ω are obtained through
minimization of the error term of Equation (48), while stacked estimates accommodate the restrictions of
both Equation (48) and Equation (52). In practice, to obtain the stacked estimates, we pile up the the
values for Y gt

Fj/iF and X̂gt
1S in Equations (48) and (52) and run a non-linear-least-squares estimation over this

complete set of observations. Confidence intervals shown in parenthesis are again constructed by means of
nested bootstraps. Stacked 2GMM estimates are our preferred results, since Equation (48) is expected to add
extra information to the unstacked estimator and since we once again expect the 2GMM estimates to be
more efficient than those obtained via unweighted 2SLS.

The last row of Table 3 show estimates for the macroelasticity obtained by pooling data accross all goods in
our dataset. Point estimates, in this case, are 2.24 and 3.92 for the stacked 2SLS and 2GMM specifications,
respectively. These figures are on average higher than those reported by Tourinho et al. (2015), who estimate
a cross-sector average of 1.34 for macroelasticities of similar sectors of the Brazilian economy. Their approach
is however quite distinct from ours, in that it employs a time series estimation on a specification that does
not account for the microelasticities. Although we ignore previous studies that simultaneously estimate σ
and ω for the Brazilian economy, our 2SLS results are somewhat close to those obtained by FLOR for the
US, of 2.29. Our estimates are also compatible with the average value of the macroelasticities of the GTAP
database, of 2.04 (or exactly half of this for the microelasticities). Bajzik et al. (2020) weigh the different

23For instance, Broda and Weinstein (2006) perform a grid-search over 1.05 ≤ σ ≤ 131.5 whenever their unrestricted
optimizations return σ̂g ≤ 1.

24To generate the intervals, we first draw 500 random samples (with replacement) from our original observations (each of
which with the size of our initial dataset) and calculate the point estimates of σ̂g for each of these samples. We then draw 100
random samples (again with replacement) from each of these 500 bootstraps (keeping the number of sampled observations equal
to those in our original dataset) and use those nested samples to calculate standard deviations for each of the initial 500 point
estimates of σ̂g . With these standard deviations, we are then able to calculate percentile t confidence intervals (as in MacKinnon
(2006)).

25Unlike Barroso (2010), we do not find evidence that sectors that are less technology intensive necessarily hold higher trade
elasticities.

26As discussed in Bekkers and Francois (2018), the elasticities of substitution in the GTAP database are based on estimated
tariff elasticities from Hertel et al. (2007). In this case, the elasticity of substitution between imports in the Melitz model, σ, is
given by σg = ξgϵt

g , where ξg is the degree of granularity and ϵt
g is the tariff elasticity. We set the degree of granularity to 2/3.5

(as in Caliendo et al. (2023)).
27Averages for Aguiar et al. (2019) and Caliendo et al. (2023) are calculated by first mapping these models’ sectors into 25

categories that are more compatible with ours.
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Table 2: 2SLS and 2GMM estimates of the microelasticities (σ̂g).

Sector Number of goods 2SLS 2GMM

5.20 6.51Crop and Animal Production 15 [3.09; 7.30] [4.79; 8.21]
2.04 2.08Oil and Gas 1 [1.56; 4.30] [2.11; 3.75]
1.68 3.05Mining Extraction (Metal Ores) 6 [1.31; 2.07] [1.93; 4.21]
2.67 2.45Mining Extraction (Other) 18 [2.25; 3.10] [1.73; 3.10]
3.39 4.20Food Products 79 [2.82; 4.02] [3.71; 4.74]
2.22 3.68Beverages and Tobacco 13 [1.24; 3.08] [2.03; 5.23]
3.73 3.62Textiles 62 [3.20; 4.43] [3.14; 4.20]
4.38 5.38Wearing Apparel 28 [3.64; 5.04] [4.70; 6.03]
3.21 4.32Leather and Footwear 8 [1.95; 4.31] [2.75; 5.97]
1.28 3.72Wood Products 11 [0.08; 2.18] [1.94; 5.62]
3.96 4.01Paper and Paper Products 26 [3.32; 4.59] [3.23; 4.84]
8.00 -6.47Printing and Reproduction of Recorded Media 1 [-33.81; 148.16] [-72.29; 145.37]
1.75 2.50Coke and Refined Petroleum Products 9 [0.76; 2.41] [1.81; 3.06]
2.59 2.68Chemical Products 280 [2.46; 2.69] [2.56; 2.79]
5.52 4.05Pharmaceuticals and Medicinal Chemical Products 10 [2.88; 12.08] [1.78; 7.88]
3.59 3.29Rubber and Plastic Products 38 [3.18; 3.92] [3.00; 3.58]
2.29 2.53Non-metallic Mineral Products 59 [2.12; 2.46] [2.27; 2.77]
3.51 3.42Basic Metals 55 [3.19; 3.86] [3.09; 3.76]
3.34 3.13Fabricated metal products [3.00; 3.63] [2.80; 3.50]
3.70 5.69Computer and Electronic Products

71

[2.95; 4.53] [4.93; 6.69]
3.25 3.13Electrical Equipment 78 [2.95; 3.57] [2.88; 3.35]
2.74 3.13Machinery and Equipment (n.e.c) 138 [2.49; 3.08] [2.80; 3.47]
3.56 4.68Motor Vehicles, Trailers, and Semi-trailers 17 [2.24; 5.18] [3.23; 6.28]
2.18 2.03Other Transport Equipment 6 [-8.84; 10.42] [-6.20; 11.72]
3.27 3.43Other Manufacturing 40 [2.44; 4.26] [2.51; 4.51]

3.07 3.26All Sectors 1140 [2.98; 3.16] [3.15; 3.35]

Note: Estimates represent the median microelasticity of each sector. Each σ̂g is obtained by solving the
system of quadratic equations involving the coefficients θg

i of Equation (43). These coefficients are in turn
estimated from Equation (43), with the 2SLS and 2GMM procedures described in Subsection 3.3. As in
FLOR, the 95% confidence intervals reported in parentheses are obtained from nested bootstrap samples of
the observations. All estimates are adjusted by a bootstrap-based bias correction (see Cameron and Trivedi
(2005)).
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Figure 1: Kernel densities for the overall estimates of the microelasticity.
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(b) 2GMM.
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existing estimates found in the literature (using a list of best practices) and construct a synthetic estimate of
3.2 for the macroelasticity of Brazil, with a confidence interval ranging from 1.3 to 5.0. Caliendo et al. (2023)
also adopt values for ω similar to our estimates, which average 2.17 across sectors.28

For our stacked specification, the point estimates obtained with 2SLS and with 2GMM are greater than 1
for 92% and 88% of the sectors, respectively. Confidence intervals are however quite large, especially for
our 2GMM estimates. Large confidence intervals are also found in FLOR, and stem from the fact that the
residuals are not calculated in the same manner across all stacked observations (with some obtained from
Equation (48) and others from Equation (52)). The proportion of residuals minimizing each of these two
equations is of course uneven between bootstraps, which makes bootstraps estimates become very dissimilar
in some cases. This unbalance is more harmful for intervals obtained with the 2GMM method, which makes
further use of the uneven residuals to weight the observations of its first step. Lower limits of confidence
intervals are greater than one for only 5 out of the 22 sectors for which we obtain consistent 2GMM point
estimates. Confidence intervals for the 2SLS estimates are more well-behaved and include the value of unity
for 15 out of the 23 sectors with consistent point estimates. In this case, the sectors for which our estimates
are not statistically greater than 1 generally feature a very limited number of goods.

Table 4 summarizes three types of statistics that help us compare the sizes of our estimated micro and
macroelasticities. To save space, we only compare the 2SLS and 2GMM estimates of σ with the corresponding
stacked 2SLS and 2GMM estimates of ω.

In the first column (of each the 2GMM and the 2SLS estimates), we simply report the percentage of goods
within each sector for which we have ω̂ < σ̂g (in terms of the point estimates of each of these elasticities).
Point estimates for the microelasticity are greater than those of the macroelasticity for 77% and 65.8% of the
goods when these are estimated with 2SLS and 2-step-GMM, respectively. These percentages are somewhat
homogeneous across sectors (especially for the 2SLS estimates) and are also in line with those of FLOR, who
report ω̂ < σ̂ for 75% of the cases.

The second and third columns (of each the 2GMM and the 2SLS estimates) report the results of statistical
tests on two hypotheses about the sizes of σ and ω. As in FLOR, tests are conducted using the nested
bootstrap confidence intervals described before. The first test rejects the null hypothesis that ω ≥ σg for
18.8% and 10.6% of the goods when the elasticities are estimated with the 2SLS and 2GMM methods,

28Once again, cross-sector averages for Caliendo et al. (2023) and Aguiar et al. (2019) are obtained after mapping these
models’ macroelasticities into 25 categories that are more compatible with our sectors. For FLOR, the average is calculated over
the study’s original 8 sectors.
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Table 3: Unstacked and stacked estimates of the macroelasticities (ω̂).

Unstacked Stacked

Sector Number of goods 2SLS 2GMM 2SLS 2GMM

1.12 0.62 1.80 2.46Crop and Animal Production 15 [0.26; 2.36] [-1.31; 2.30] [1.48; 2.13] [-1.17; 3.74]
2.19 1.65 0.92 1.48Oil and Gas 1 [0.76; 6.82] [0.83; 3.42] [-0.72; 3.12] [0.85; 2.80]
15.66 8.55 15.69 6.47Mining Extraction (Metal Ores) 6 [8.53; 38.03] [-9.39; 29.41] [9.11; 37.40] [-6.95; 20.51]
1.07 1.61 1.41 1.37Mining Extraction (Other) 18 [0.21; 1.91] [0.06; 3.89] [0.95; 1.78] [-0.36; 3.80]
4.73 2.86 4.16 18.05Food Products 79 [2.57; 7.15] [-7.59; 12.96] [2.77; 5.66] [11.62; 28.87]
1.26 4.43 2.78 9.15Beverages and Tobacco 13 [-2.00; 3.91] [0.33; 8.50] [-1.58; 6.02] [4.31; 15.67]
1.46 2.72 2.36 1.26Textiles 62 [0.85; 2.00] [-5.10; 12.46] [1.95; 2.90] [-5.64; 6.28]
3.13 2.39 2.95 2.69Wearing Apparel 28 [2.21; 4.35] [-3.73; 8.34] [2.37; 3.50] [-11.79; 24.99]
-1.85 -2.65 2.55 2.08Leather and Footwear 8 [-4.94; 1.54] [-4.90; -0.20] [-0.69; 5.20] [0.46; 4.27]
1.35 -7.33 2.37 2.82Wood Products 11 [-0.12; 2.81] [-11.23; -4.86] [1.37; 3.91] [0.74; 4.14]
0.13 2.59 2.17 5.39Paper and Paper Products 26 [-1.31; 1.48] [-0.01; 5.74] [1.09; 3.86] [2.58; 8.93]
17.40 13.55 16.87 21.52Printing and Reproduction of Recorded Media 1 [-46.91; 311.81] [9.30; 73.63] [-57.11; 331.38] [9.20; 78.13]
-10.39 -0.54 -10.21 -7.06Coke and Refined Petroleum Products 9 [-30.15; -3.00] [-6.26; 4.32] [-36.46; -2.86] [-16.26; -3.59]
0.38 -0.76 1.85 1.70Chemical Products 280 [-0.52; 1.04] [-13.50; 3.54] [1.31; 2.18] [-1.76; 4.67]
0.66 -5.71 2.89 0.84Pharmaceuticals and Medicinal Chemical Products 10 [-2.91; 4.35] [-12.58; -1.16] [1.50; 5.80] [-2.11; 3.76]
-0.28 1.21 2.27 1.42Rubber and Plastic Products 38 [-2.81; 0.66] [-6.81; 6.33] [1.02; 3.96] [-5.24; 5.16]
0.95 2.61 1.94 3.51Non-metallic Mineral Products 59 [-0.90; 2.47] [-1.12; 6.38] [-0.42; 3.51] [-0.22; 7.30]
0.84 0.83 2.04 2.43Basic Metals 55 [0.30; 1.38] [-0.79; 2.25] [1.79; 2.29] [0.28; 5.26]
0.63 4.25 2.64 7.97Fabricated metal products [-0.53; 1.83] [0.75; 8.04] [2.30; 2.83] [-4.91; 33.69]
0.33 0.45 2.17 9.85Computer and Electronic Products

71

[-0.47; 0.86] [-3.53; 2.82] [0.54; 3.67] [6.95; 16.43]
2.50 0.32 2.73 1.51Electrical Equipment 78 [1.77; 3.42] [-4.60; 4.29] [2.35; 3.04] [-2.85; 5.24]
1.67 2.84 1.88 1.62Machinery and Equipment (n.e.c) 138 [1.02; 2.19] [0.20; 5.68] [1.71; 1.97] [-0.06; 3.62]
-2.93 12.28 3.63 0.93Motor Vehicles, Trailers, and Semi-trailers 17 [-6.21; -0.71] [6.22; 16.91] [2.22; 5.28] [-0.86; 2.49]
1.28 1.02 1.87 2.07Other Transport Equipment 6 [-1.18; 4.31] [-1.92; 4.29] [0.75; 3.60] [0.44; 3.40]
1.72 0.64 1.70 1.40Other Manufacturing 40 [0.37; 3.21] [-5.15; 6.66] [0.77; 2.95] [-3.44; 4.95]

1.49 2.05 2.24 3.92All Sectors 1140 [1.11; 1.64] [-1.75; 5.86] [2.03; 2.25] [-0.64; 7.21]

Note: Unstacked estimates for ω are obtained through minimization of the error term of Equation (48), while stacked estimates minimize the
residuals of the system of Equations (48) and Equation (52). These minimizations are achieved by running non-linear-least squares estimations
on unweighted (2SLS) and weighted (2GMM) versions of Y gt

Fj /iF
and X̂gt

1S in these systems of equations. Weights for the 2GMM specification

are given by the inverse of the residuals between the observed values of Y gt
Fj /iF

and the estimates ˆ
Y gt

Fj /iF
obtained with 2SLS. 95% confidence

intervals, reported in parentheses, are obtained from nested bootstrap samples of the observations (as in FLOR). All estimates are adjusted by a
bootstrap-based bias correction (see Cameron and Trivedi (2005)). The last row represents the estimation results obtained by pooling the
products of all sectors and estimating a common ω.
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Table 4: Comparing estimated micro (σg) and macroelasticities (ω).

2SLS 2GMM

Rejection of H0: Rejection of H0:

Sector ω < σg

(%)
ω ≥ σg

(%)
2ω = σg

(%)
ω < σg

(%)
ω ≥ σg

(%)
2ω = σg

(%)

Crop and Animal Production 92.9 21.4 0.0 78.6 0.0 0.0
Oil and Gas 100.0 0.0 0.0 100.0 100.0 0.0
Mining Extraction (Metal Ores) 0.0 0.0 80.0 33.3 0.0 0.0
Mining Extraction (Other) 88.2 23.5 5.9 94.1 17.6 0.0
Food Products 47.4 6.4 34.6 15.6 2.6 75.3
Beverages and Tobacco 53.8 0.0 0.0 33.3 8.3 41.7
Textiles 83.6 14.8 27.9 88.5 1.6 1.6
Wearing Apparel 80.8 34.6 30.8 96.3 7.4 3.7
Leather and Footwear 75.0 0.0 0.0 71.4 0.0 0.0
Wood Products 36.4 0.0 36.4 60.0 10.0 10.0
Paper and Paper Products 84.6 26.9 11.5 45.8 0.0 29.2
Printing and Reproduction of Recorded Media 0.0 0.0 0.0 0.0 0.0 0.0
Coke and Refined Petroleum Products 88.9 66.7 66.7 88.9 77.8 77.8
Chemical Products 82.1 27.1 37.7 73.2 10.3 1.1
Pharmaceuticals and Medicinal Chemical Products 70.0 0.0 0.0 88.9 0.0 0.0
Rubber and Plastic Products 89.5 15.8 15.8 91.7 13.9 0.0
Non-metallic Mineral Products 91.2 15.8 1.8 44.8 1.7 1.7
Basic Metals 87.3 29.1 34.5 80.8 7.7 0.0
Fabricated metal products 74.6 11.3 31.0 20.0 2.9 4.3
Computer and Electronic Products 76.1 8.5 4.2 37.1 5.7 41.4
Electrical Equipment 84.4 18.2 42.9 93.5 29.9 3.9
Machinery and Equipment (n.e.c) 69.4 20.9 19.4 75.4 16.4 7.5
Motor Vehicles, Trailers, and Semi-trailers 52.9 5.9 11.8 82.4 23.5 5.9
Other Transport Equipment 66.7 0.0 33.3 50.0 33.3 16.7
Other Manufacturing 84.2 13.2 10.5 85.0 10.0 5.0

All Sectors 77.0 18.8 26.1 65.8 10.6 12.0

Note: As in FLOR, test statistics are calculated from nested bootstrapped samples. As indicated in the column
headers, statistics refer to 2SLS and 2GMM estimates for σ and to stacked (2SLS or 2GMM) estimates for ω. Tests
that involve estimates that are inconsistent with theory are left in blank.

respectively. Thus, depending on the specification, we cannot statistically distinguish between our estimated
micro and macroelasticities for about 81.2%% and 89.4% of the goods. Our results for the 2SLS and 2GMM
estimates are smaller to those of FLOR, who reject H0 : ω ≥ σg for around 35% (2SLS) and 27% (2GMM) of
their goods.

The second test assesses the validity of the “rule of two” and rejects the null hypothesis that 2ω = σg for
26.1% (2SLS) and 12% (2GMM) of the goods. These percentages are broadly in line with those of FLOR,
who reject the “rule of two” for about 11% and 20% of their goods with tests employing 2SLS and 2GMM
estimates, respectively.

5.2 Application: Tariffs elimination in Brazil
To investigate the importance of the two-tier Armington demand structure, we conduct a set of simulations
of a hypothetical reduction to zero of Brazil’s import tariffs. Through these simulations, we can assess how
the differentiation between microelasticities (σg) and macroelasticities (ωg) can affect the results, and also
compare the estimates for Brazil with those reported in the existing literature.29,30

29In this Subsection, the index g denotes a sector. The index j is dropped since the same elasticitiy of substitution is
considered for all regions.

30Potential bias may arise from CGE simulations of Free Trade Agreements that impose tariff rate quotas (TRQs), as discussed
by Jafari et al. (2021a). While our current model assumes full trade liberalization, bypassing the TRQ-related aggregation bias,
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Simulations are conducted following the quantitative trade model outlined in Section 2.31 In Appendix C, we
present additional information regarding the equations comprising the system and the sectors for which either
a monopolistically competitive or perfectly competitive structure was assumed. We obtain the numerical
solutions using the decomposition method described in Balistreri et al. (2011) and Balistreri and Rutherford
(2013). Also, as previously mentioned, multi-sector models with scale effects are subject to the problem of
corner solutions and infinitely large effects. To mitigate these issues, the literature commonly uses specific
model specifications such as a two-tier Armington structure, imperfect mobility for production factors, and
adjustments in input-output coefficients (Bekkers and Francois, 2018). Our simulations allow for these three
possibilities, but only the last one is fixed throughout all simulations.32

In addition to the elasticities of substitution (σg and ωg), another relevant parameter for the model is the
shape parameter of the firm productivity distribution (γg). We obtain this parameter from the relation
ζg = γg/(σg − 1), where ζg is the corresponding parameter for the Pareto distribution of firm size. The
parameter ζg was estimated using the number of employees per firm from the Annual Social Information
Report (RAIS) database, following Ahmad and Akgul (2018).33 For comparison purposes, we simulate
the results using our estimates for ωg and σg and benchmark values for these parameters borrowed from
the GTAP database and from Caliendo et al. (2023).34 Regarding the the production factors elasticity of
transformation (θf ), we used the values of 1,35 and also performed simulations assuming perfect mobility of
the production factors.

Our model is calibrated using data primarily sourced from the WIOD, with the exception of tariff data,
which was retrieved from the MacMAP database. All simulation data pertain to the year 2014. The database
is aggregated to represent five regions (Brazil, China, USA, EU27, and Rest of the World), 24 sectors, and
two production factors (capital and labor). To provide context for the exercises, Figure 2 displays the
trade-weighted average tariffs imposed by Brazil on a sectoral basis in 2014. There is significant heterogeneity
across sectors. It can be observed that the sectors with the highest tariffs are Textiles, Wearing Apparel
and Leather Products, Fabricated Metal Products, and Electrical Equipment, while the activities related to
agriculture and extractive industries have the lowest tariffs.

The first exercise involves evaluating the welfare impact of tariff liberalization in Brazil for different ratios of
the parameters σg and ωg, including the estimated ratio for each sector. We consider the values for σg listed
in Appendix C. For ωg, the value is derived from the calculation of the ratio indicated on the abscissa of
Figure 3 and the estimated value of σg. For example, for a ratio of 1, we compute ωg = σ̂g, and for a ratio of
2, ωg = σ̂/2. When using our estimates of ωg, the considered values are also listed in Appendix C.36

Figure 3 presents the welfare results for Brazil with the ωg/σg ratio ranging from 1 to 2, as well as the result

more realistic approaches may benefit from the approach proposed by Jafari et al. (2021b) and Jafari et al. (2021a).
31Despite not formulating our solution via exact hat algebra, our approach is more consonant with New Quantitative

Trade (NQT) models than with Computable General Equilibrium (CGE) models. Our model embodies a simplified user
framework, which includes only intermediate and final users, eschewing explicit delineation of investment and government sectors.
Furthermore, we deploy a Cobb-Douglas production function, and our Armington elasticity estimates are intrinsically tied to our
chosen theoretical model. Contrarily, CGE models are characterized by their granular detail, their integration of parameters
from existing literature, and their acceptance of elasticities of substitution between intermediate inputs and production factors
that diverge from 1. A more detailed comparison between NQT and CGE models can be accessed in Bekkers (2017).

32For details about the adjustment, please refer to Costinot and Rodríguez-Clare (2014). Also, Costinot and Rodríguez-Clare
(2014) show that in simulations of a model with constant returns to scale for all sectors, smoothing of input-output coefficients
does not drastically alter the results. Appendix C shows the correlation between the sectoral results with and without adjustment
of input-output coefficients for a set of simulations in which a structure of perfect competition is assumed for all sectors
(multi-sector Armington model).

33The RAIS database provides a census of the Brazilian formal labor market. We use data from 2019 to estimate ζg .
34Table 9 shows the Armington elasticities used in each simulation. We use 2GMM estimates for σg and ωg if the lower limit

of the confidence interval is greater than one. Otherwise, we use the 2SLS estimate by checking the same rule. If we don’t have
a valid estimate for a sector, we use the “All Sectors” valid estimates.

35This value is arbitrary, but its purpose is to contrast with the results obtained under the assumption of perfect mobility.
Also, Bekkers and Francois (2018) use a value of 1 as the lower bound in the sensitivity analysis of this parameter.

36Besides using our estimates of σg and computing ωg based on varying ratios of these parameters, an alternative approach
could be to use our estimates of ωg and calculate σg for different assumed ratios. However, the solution method doesn’t converge
for the simulation where σg = ω̂g. In our experiments, the algorithm has convergence issues for low elasticity of substitution
values. Nevertheless, as the microelasticities are estimated with greater precision, the option suggested in the text may be more
suitable.
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Figure 2: Average tariff applied by sector - Brazil, 2014
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Note: Trade-weighted average tariff calculated using data from the WIOD and the MacMAP databases.

found using our estimates of ωg and σg. The results are shown for simulations that consider both perfect
(θf = ∞) and imperfect mobility (θf = 1) of production factors.37 It is observed that welfare gain increases
with the σg/ωg ratio. This result aligns with the findings of FLOR, who demonstrate that the trade elasticity
(εg)38 tends to decrease with the reduction of ωg, thereby increasing trade gains. The two-tier Armington
structure directly impacts welfare variations. This is because, with 1 < ωg < σg, a decrease in domestic
participation in sector g is achieved with a greater decline in the price of imports for that sector (Caliendo
et al., 2023). Using our estimates of ωg, we find a positive welfare impact. A similar result is found by fixing
the σg/ωg ratio at, approximately, 1.55 for all sectors.

Figure 3: Analyzing the impact of the ratio between microelasticities (σg) and macroelasticities (ωg) on
welfare change resulting from full tariff removal in Brazil.
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Note: Welfare is computed as the change in real income (Ii/P hh
j ).

37The value of 1 for the transformation elasticity (θf ) is the standard value adopted in Bekkers and Francois (2018).
38In the FLOR model, the trade elasticity relevant for welfare analysis is given by: εg = γg(ωg−1)

(σg−ωg)

(
γg

σg−1 −1

)
+σg−1

.
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Table 5: Comparison of results for different sets of elasticities.

Imperfect Mobility (θf = 1) Perfect Mobility (θf = ∞)
Variable Ours GTAP CFRT Ours GTAP CFRT
Welfare 0.11 0.17 0.19 0.17 0.20 0.21
Real Value Added 0.90 1.00 1.04 0.98 1.09 1.12
Total imports 7.60 7.32 6.81 8.41 8.26 7.64
Total exports 13.14 12.67 11.79 14.54 14.29 13.20
Note: The parameter θf

i governs factor mobility between sectors. Each simulation was
run using a different set of elasticities. ’Ours’ means that the elasticities from Tables 2 and 3
were used. In GTAP columns, the GTAP elasticities were considered for all regions. CFRT
indicates that the elasticities from Caliendo et al. (2023) were considered for all regions. Wel-
fare is computed as the change in real income (Ii/P hh

j ). Real value added is the change in
total remuneration of production factors divided by the consumer price index (P hh

j ).

Table 5 shows a comparison of outcomes derived from simulations that use our proposed values for σg and ωg

with those incorporating elasticities from the GTAP database and from Caliendo et al. (2023). A detailed
listing of the elasticity values employed in these simulations is provided in Table 9. Both the GTAP database
and Caliendo et al. (2023) adhere to the “rule of two”. In contrast, our estimates yield a ratio between σg

and ωg that ranges from 1.12 to 3.62.

Firstly, it should be noted that the impact on welfare is lower with our estimates. This result is consistent
with the fact that our welfare result could be obtained using a single ratio of approximately 1.55, which is
lower than the commonly used “rule of two”.

For all simulations, the impact on real value added is positive, ranging from 0.90% to 1.12%. Trade variables
are highly impacted, with predicted growth in exports higher than in imports. Although counterintuitive, this
result stems from the structure of the model, which assumes constant deficits. Since Brazil recorded a deficit
in total trade (of goods plus services) in 2014, the increase in imports must be offset by a relatively greater
increase in exports. Despite some differences, it is observed that, at least for the macroeconomic variables,
there is no significant discrepancy in the results between the sets of elasticities used in the simulations
presented in Table 5.

Regarding the sectoral results for Brazil, Table 6 shows the impacts on the production of each sector for
different values of ωg. For all columns, the results are computed using our estimates for σg. We consider three
cases. In the first case, we set the value of ωg equal to our estimate for σg. In the second case, we adopt the
rule of two and set ωg = σg/2. Finally, we use our estimate of ωg.39 As in the welfare analysis, the analysis is
repeated considering both perfect and imperfect mobility of production factors. It is important to note that
ωg controls the total demand for imports. Thus, when comparing to the scenario where ωg = σg, sectoral
effects tend to decrease once ωg is set to a value lower than σg. This happens because a lower value for ωg

implies less substitution between domestic and imported goods, resulting in a smaller impact on sectoral
production. It is also worth noting that the results obtained in the simulations considering ωg = σg/2 are
closer to the results obtained with our estimates of σg and ωg than those obtained when we use the same
values for these two elasticities.

Looking at specific results, we see that the impacts are quite distinct for the sector of textiles, wearing apparel
and leather products, which is a sector with a high initial tariff. In the simulation assuming perfect mobility
of production factors, the impact for this sector varies between -54% and -6%, while the impact estimated
using the macro elasticity obtained in this study is -8%. As expected, limiting the mobility of production
factors reduces these estimates to the range of -20% to -4%.

39In Appendix C, we also present the sectoral results for simulations using the elasticities from GTAP and Caliendo et al.
(2023).
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Table 6: Change in production for different values of the ratio between microelasticities (σg) and macroelas-
ticities (ωg).

Imperfect Mobility (θf = 1) Perfect Mobility (θf = ∞)
Sector ωg = σ̂g ωg = σ̂g/2 ωg = ω̂g ωg = σ̂g ωg = σ̂g/2 ωg = ω̂g

Crop and Animal Production 2.77 1.80 2.00 5.87 2.72 3.09
Forestry and logging 0.80 0.46 0.40 1.03 0.48 0.31
Fishing and aquaculture 1.24 0.61 0.47 2.01 0.77 0.44
Mining and quarrying 4.47 2.29 3.21 14.81 4.30 7.84
Food Products, Beverages and
Tobacco

4.03 3.05 3.32 6.73 3.67 4.09

Textiles, Wearing Apparel and
Leather Products

-19.97 -3.71 -5.12 -54.31 -5.96 -8.34

Wood Products 2.96 2.69 2.78 5.76 3.84 4.03
Paper and Paper products 3.26 3.30 3.55 6.67 4.35 4.78
Printing and Reproduction of
Recorded Media

-1.26 0.57 0.04 -1.92 0.65 -0.12

Coke and Refined Petroleum
Products

2.40 1.53 2.24 3.11 1.76 2.57

Chemicals and Chemical
products

0.09 1.55 0.90 1.14 1.77 0.96

Pharamaceuticals and Medical
Chemical Products

-0.35 0.18 -0.37 -0.29 -0.15 -1.34

Rubber and Plastic products -4.36 0.42 -1.12 -5.88 0.42 -1.64
Non-metallic Mineral Products -1.11 1.11 -0.38 -1.44 1.31 -0.74
Basic Metals 4.14 3.89 4.02 8.34 5.05 5.30
Fabricated Metal Products -6.43 -0.01 -4.03 -11.24 -0.21 -6.81
Computer and Electronic
Products

-8.29 -2.69 -0.87 -17.18 -4.04 -1.35

Electrical Equipment -9.02 -0.26 -6.75 -15.06 -0.52 -11.10
Machinery and Equipment
(n.e.c.)

-5.16 0.57 -0.24 -9.30 0.46 -0.72

Motor Vehicles, Trailers and
Semi-Trailers

-4.74 0.00 -2.81 -6.35 -0.28 -4.47

Other Transport Equipment 5.01 3.42 3.51 16.27 4.91 5.64
Other Manufacturing 3.35 2.02 2.31 6.08 2.77 3.28
Repair and Installation of
Machinery and Equipment

- - - - - -

Services 0.12 0.24 0.21 0.14 0.21 0.15
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6 Conclusion
CGE simulations of international economics rely heavily on the values that their models assume for Armington
elasticities. Despite the importance of these parameters, policy evaluation in emerging countries is still often
conducted with CGE models that employ elasticities taken from the literature, which seldom reflect the
specific contexts of these regions.

In this work, we estimate Armington elasticities for the Brazilian economy exploring the identification strategy
proposed by FLOR. As in FLOR, the model is also flexible enough to allow for sector-specific elasticities
and to separate these into an upper-tier parameter (ω), which governs substitution between domestic and
imported goods, and a lower-tier coefficient (σ), which rules substitution between goods imported from
different trade partners. Using this specification, we employ FLOR’s identification strategy to generate
consistent estimators for ω and σ. Consistency is achieved through assumptions about the independence and
the heteroscedasticity of the residuals of demand and supply equations. Asymptotically, these estimators are
able to mitigate potential biases that arise from the mismatch between the model’s CES-like price indexes
and real-world observable unit values.

Our sector-level estimates for the micro and macroelasticities are somewhat different from those of other
recent works on the Brazilian economy. For the microelasticity, our cross-sector average of within-sector
medians is of 3.21 for σ̂g. The overall macroelasticity estimated by pooling all goods are of 2.24 (2SLS)
and 3.92 (2GMM) for ω̂. Barroso (2010) and Tourinho et al. (2015) estimate averages of 7.13 and 1.34,
respectively, for the the micro and macroelasticities of similar sectors of the Brazilian economy. Overall, our
cross-sector averages for both the micro and macroelasticities are also in line with those of FLOR and with
benchmark values of CGE models that differentiate between upper- and lower-tier elasticities.

At least for some sectors, our results fail to corroborate standard assumptions made by CGE models.
Depending on the specification, we find that between 65.8% and 77% of the point estimates for σg are greater
than these for the macroelasticities. In our preferred specification, statistical tests reject H0 : ω ≥ σg and
H0 : 2ω = σg for 10.6% and 12% of the cases, respectively.

We wrap up the analysis by employing our estimates for ω and σ to simulate the outcomes of an tariff
liberalization in Brazil, using an augmented version of FLOR’s Melitz-like model, which we enhance to
accommodate intermediate goods, import tariffs shocks and imperfect mobility of factors of production.
Although our cross-sector averages for σ̂ and ω̂ apparently indicate that standard calibrations of general-
purpose CGE models might properly capture the dynamics of the Brazilian economy, sector level differences
between estimated and benchmark coefficients suggest otherwise. For some sectors, the impact of a tariff
liberalization on production is considerably different among the sets of parameters considered. In some cases,
there is even a change of sign. Our estimates suggest that it would be more appropriate to assume ω < σ.
However, given the difficulty of obtaining precise estimates and the importance of the ratio between these
two parameters for the results, we understand that it would be more appropriate for this ratio to be the
subject of a sensitivity analysis in simulations assuming the two-tier Armington structure.
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Appendix

A Derivations
A.1 Unit values
Assuming that unit values UV gt

ij reflect a consumption-weighted average of the prices of each variety of good
g, we have:

UV gt
ij =

∫ ∞

φ∗gt
ij

pgt
ij (φ)

 cgt
ij (φ)∫∞

φ∗gt
ij

cgt
ij (φ)dGg

i (φ)

 dGg
i (φ). (53)

Using Equations (4) and (11) we can write cgt
ij (φ) as

cgt
ij (φ) =

[
pgt

ij (φ)
P gt

ij

]−σg
j V gt

ij

P gt
ij

=
[

σg
j (1 + tgt

ij )τgt
ij zgt

i

(σg
j − 1)P gt

ij

]−σg
j
(

V gt
ij

P gt
ij

)
(φ)σg

j ,

(54)

so that Equation (53) becomes:

UV gt
ij =

∫ ∞

φ∗gt
ij

pgt
ij (φ)

 φσg
j∫∞

φ∗gt
ij

φσg
j dGg

i (φ)

 dGg
i (φ). (55)

Assuming a Pareto distribution for φ (i.e. Gg
i (φ) = 1 − φ−γg

i ) and imposing γg
i > σg

j , we have:

UV gt
ij =

∫ ∞

φ∗gt
ij

pgt
ij (φ)

 φσg
j

γg
i

∫∞
φ∗gt

ij
φσg

j
−γg

i
−1dφ

 dGg
i (φ)

=
∫ ∞

φ∗gt
ij

pgt
ij (φ)

 φσg
j

γg
i

σg
j

−γg
i

φσg
j

−γg
i

∣∣∣∞
φ∗gt

ij

 dGg
i (φ)

=
∫ ∞

φ∗gt
ij

pgt
ij (φ)

 φσg
j

γg
i

γg
i

−σg
j

(φ∗gt
ij )σg

j
−γg

i

 dGg
i (φ).

(56)
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Once again, using Equation (11) (twice) along with Gg
i (φ) = 1 − φ−γg

i and γg
i > σg

j − 1, we get:

UV gt
ij =

(γg
i − σg

j )

γg
i (φ∗gt

ij )σg
j

−γg
i

∫ ∞

φ∗gt
ij

pgt
ij (φ)φσg

j dGg
i (φ)

=
(γg

i − σg
j )(1 + tgt

ij )τgt
ij σg

j zgt
i

γg
i (σg

j − 1)(φ∗gt
ij )σg

j
−γg

i

∫ ∞

φ∗gt
ij

φσg
j

−1dGg
i (φ)

=
(γg

i − σg
j )(1 + tgt

ij )τgt
ij σg

j zgt
i

(σg
j − 1)(φ∗gt

ij )σg
j

−γg
i

∫ ∞

φ∗gt
ij

φσg
j

−γg
i

−2dφ

=
(γg

i − σg
j )(1 + tgt

ij )τgt
ij σg

j zgt
i

(σg
j − γg

i − 1)(σg
j − 1)(φ∗gt

ij )σg
j

−γg
i

φσg
j

−γg
i

−1
∣∣∣∞
φ∗gt

ij

=
(γg

i − σg
j )(1 + tgt

ij )τgt
ij σg

j zgt
i

(γg
i − σg

j + 1)(σg
j − 1)(φ∗gt

ij )σg
j

−γg
i

(φ∗gt
ij )σg

j
−γg

i
−1

,

=
(γg

i − σg
j )(1 + tgt

ij )τgt
ij σg

j zgt
i

(γg
i − σg

j + 1)(σg
j − 1)φ∗gt

ij

=
(γg

i − σg
j )

(γg
i − σg

j + 1)pgt
ij (φ∗gt

ij ).

(57)

A.2 Sato-Vartia price indexes for imported goods
Following Sato (1976), we can define the log-change of a price index (P gt

Fj
) for each good imported by country

j from different trade partners i as

ln
(

P gt
Fj

P gt−1
Fj

)
=

J∑
i=1, i ̸=j

ln

( κgt
ij

κgt−1
ij

) 1
1−σ

g
j P gt

ij

P gt−1
ij

wgt
ij

, (58)

where wgt
ij is the weight for origin i, such that

∑J
i=1 wgt

ij = 1 for every j ∈ J and t = 2, ..., T . Sato’s (1976)
ideal weight will therefore be given by:

wgt
ij =

(sij
gt − sij

gt−1)/(ln sij
gt − ln sij

gt−1)∑J
k=1, k ̸=j(skj

gt − skj
gt−1)/(ln skj

gt − ln skj
gt−1)

with

sij
gt =

P gt
ij Cgt

ij∑J
k=1, k ̸=j P gt

kj Cgt
kj

=
V g

ij

V g
Fj

= κgt
ij

(
P gt

ij

P gt
Fj

)1−σg
j

,

where the last equality follows directly from Equation (1).

Note that Equation (58) can also be written as:

P gt
Fj

P gt−1
Fj

=
J∏

i=1, i ̸=j

( κgt
ij

κgt−1
ij

) 1
1−σ

g
j P gt

ij

P gt−1
ij

wgt
ij

. (59)

Proceeding accordingly, we can write the corresponding relationship for the changes in unit prices of each
good imported by country j as:

UV gt
Fj

UV gt−1
Fj

=
J∏

i=1, i ̸=j

(
UV gt

ij

UV gt−1
ij

)wgt
ij

. (60)
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To achieve Equation (34), we use Equations (33) and (59) to rewrite this identity as:

UV gt
Fj

UV gt−1
Fj

=
J∏

i=1, i ̸=j

( Ngt
ij

Ngt−1
ij

) 1
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Fj
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Fj
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(
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j
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) 1
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j
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Fj

)(
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Fj
Ngt

Fj
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) 1
σ

g
j

−1

.

(61)

A.3 The micro demand curve
Multiplying both sides of Equation (35) by the Sato-Vartia weights wgt

ij and summing across all origins i ̸= j,
we get:

J∑
i=1, i ̸=j

wgt
ij

(
∆ ln V gt

ij − ∆ ln V gt
jj

)
= (1 − σg

j )

 J∑
i=1, i ̸=j

wgt
ij ∆ ln UV gt

ij
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wgt
ij εgt

ij .

(62)

Subtracting Equation (35) from this result, we obtain:

∆ ln V gt
ij − ∆ ln V gt
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wgt
ij
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(63)

Since V gt
Fj

=
∑J

i=1, i ̸=j V gt
ij and

∑J
i=1, i ̸=j wgt

ij V gt
jj = V gt

jj

∑J
i=1, i ̸=j wgt

ij = V gt
jj , the terms on the LHS can be

simplified to:
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. (64)
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Proceeding accordingly, we can rewrite the terms on the RHS of Equation (63) as:
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j )
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∆ ln UV gt

ij
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(65)

Plugging Equations (64) and (65) back to the LHS and RHS of Equation (63), we get the micro demand
curve defined in Equation (37).

A.4 The macro demand curve
Combining Equations (2) and (3) and summing across all origins i ̸= j, we get:

V gt
Fj

=
J∑

i=1, i ̸=j

V gt
ij =

J∑
i=1, i ̸=j

κgt
ij

(
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ij
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Fj

)1−σg
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(
P gt

Fj

P gt
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j
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j

 . (66)

Noting that
∑J

i=1, i ̸=j κgt
ij (P gt

ij )1−σg
j =

(
P gt

Fj

)(1−σg
j

)
(see Equation (58)) and imposing

∑J
i=1, i ̸=j κgt

ij = 1, we
can reduce Equation (66) to:
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= βgt
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(
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j
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Using the definition of domestic expenditure (Equation (1)), we can rewrite this expression as:

V gt
Fj

V gt
jj

=
(

βgt
Fj

βgt
jj

)(
P gt

Fj

P gt
jj

)1−ωg
j

.

Taking log-differences of each term and assuming ωg
j = ωj for a given set of products (i.e., for g ∈ {1...Gs}),

we get:

∆ ln
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jj

)
= −(ωj − 1)∆ ln
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P gt
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)
+ ∆ ln

(
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)
.

In terms of the unit values defined in Equations (33) and (34), this expression becomes:

∆ ln
(

V gt
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jj

)
= −(ωj − 1)∆ ln

(
UV gt
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UV gt
jj

)
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)
+
(

ωj − 1
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∆ ln κgt
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(
Ngt

Fj

Ngt
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)]
.

Shifting the unit values to the left and reorganizing the terms, we obtain Equation (38).

A.5 Employing IV with source-country indicators to pool ugt
iF over trade-partners

Combining Equations (44) and (45), we get:

θ̂
g

=
[(

X̂g
1S

)T
X̂g

1S

]−1 (
X̂g

1S

)T
Yg ={

(Xg)T Zg
[
(Zg)T Zg

]−1
(Zg)T Xg

}−1

(Xg)T Zg
[
(Zg)T Zg

]−1
(Zg)T Yg.

Using Equation (43), this expression becomes:

θ̂
g

=
{

(Xg)T Zg
[
(Zg)T Zg

]−1
(Zg)T Xg

}−1

(Xg)T Zg
[
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]−1
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]−1
(Zg)T Xg
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[
(Zg)T Zg

]−1
(Zg)T ug.

(67)

Note that our first-stage instruments Zg are defined as:

Zg =



eTg
1

0 0 0 0

0
. . . 0 0 0

0 0 eTg
i

0 0

0 0 0
. . . 0

0 0 0 0 eTg
J

 , (68)

where eTg
i

are column vectors of 1’s of length T g
i designating our indicator variables for each trade partner

i ̸= j.
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Thus, we can rewrite Equation (67) as:
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g

= θg+
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.

Assuming that the sum of the residuals is zero across t (in expectation) for each trade partner (Equation
(40)), we thus have:

plim
T →∞, i ̸=j

θ̂
g

= θg.

A.6 Identification through heteroskedasticity
We should first note the columns of matrix X̂g

1S (resulting from the first step of the 2SLS procedure) are
constituted of grouped means of the original Xg’s.

To see this, notice that using our definition for Zg in Equation (68) along with Equation (68), we can rewrite
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our predicted regressors from the first step as:
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where eTg

i
are column vectors of 1’s of length T g

i and JTg
i

are square matrices of size T g
i × T g

i .

We should further note that, using Equations (37), (41) and the definitions in Equation (43), we are able to
write Xgt

1iF and Xgt
2iF in terms of εgt

iF and δgt
iF as:

Xgt
1iF =

[
∆ ln

(
V gt

ij

V gt
Fj

)]2

=
[
(1 − ρg

1j)εgt
iF + (σg

j − 1)δgt
iF

]2 =

(1 − ρg
1j)2 (εgt

iF
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1j)(σg

j − 1)εgt
iF δgt
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j − 1)2 (δgt

iF

)2
.

(70)

and

Xgt
2iF =

[
∆ ln

(
UV gt

ij

UV gt
Fj

)][
∆ ln

(
V gt

ij

V gt
Fj

)]
=

ρg
1j(1 − ρg

1j)
(σg

j − 1)
(
εgt

iF

)2 + (1 − 2ρg
1j)εgt

iF δgt
iF − (σg

j − 1)
(
δgt

iF

)2
.

(71)

Using Equation (69) and assuming E
[
εgt

iF

]
= 0, E

[
δgt

iF

]
= 0, E

[∑
t εgt

iF δgt
iF

]
= 0 for each i ̸= j (as in

Equation (40)), and εgt
iF and δgt

iF stationary with variances σεi and σδi , we can thus conclude that X̂g
1S will
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asymptotically converge to:

plim
T →∞, i ̸=j
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. (72)

To avoid multicollinearity and be able to retrieve separate coefficients for θg
1 and θg

2 in Equation (43), we
must guarantee that X̂g

1S is full rank. In other words, since our intention is to estimate θ̂
g
1 and θ̂

g
2, we must

have at least one [2 × 2] submatrix of X̂g
1S with a non-zero determinant. Note that taking two separate rows

i and j (i ̸= j) from θg
1, this is equivalent to have:
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(73)

A.7 Adding information with extra moment conditions
We will first show that the moment conditions of Equation (51) add information to those of Equations (40)
and (42).

To check the type of restrictions that are being provided by Equations (40) and (42), we combine the supply
curves that back these assumptions (i.e., Equations (39) and (41), to get40:
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where the last equality follows from the identity εgt

ij = εgt
iF + εgt

Fj
(see Equations (35), (37) and (38)).

In addition, again using Equations (39) and (41), along with Equation (50), we can rewrite the supply shock
δgt

ij as:

δgt
ij = δgt

iF − ρ̂g
1j

εgt
Fj

(σ̂g
j − 1) + ρg

2j

(ωj − 1)
(σ̂g

j − 1)∆ ln
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UV gt
Fj

UV gt
jj
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= δgt
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+
(
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2jρFj
− ρ̂g
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)( εgt
Fj

σg
j − 1

) (75)

Notice that if we impose ρg
2jρFj

= ρ̂g
1j , the above expression is reduced to δgt

ij = δgt
iF + ρg

2j
(ωj−1)
(σ̂g

j
−1) δgt

Fj
and

Equation (74) becomes Equation (50). Thus, Equation (51) is imposing an extra restriction (ρg
2jρFj

= ρ̂g
1j) to

the moments that were originally retrieved from Equations (40) and (42).
40Note that we multiply Equation (41) by ρg

2j(ωj − 1)/(σg
j − 1) before coupling it to Equation (39).
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Conversely, we can also show that Equation (42) adds information to Equation (51). Note that if we multiply
the demand shocks εgt

ij in Equation (37) by the Sato-Vartia weights wgt
ij and sum over trade partners (i ̸= j)

we get:

J∑
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(76)
where the last equality follows from Equation (38).

Similarly, if we proceed accordingly with the supply shocks in Equation (50), we get:
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where we again use ρg
2jρFj

= ρ̂g
1j , along with Equations (41) and (76), to achieve the last identities.

Using Equations (76) and (76), we can now rewrite the moment conditions of Equation (42) as:

0 = E

[∑
t

εgt
Fj

δgt
Fj

]
= E

 (σ̂g
j − 1)
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∑
t
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ij )2εgt

ij δgt
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∑
t

∑
i ̸=j, k

wgt
ij wgt

kjεgt
ij δgt

ij εgt
kjδgt

kj


for all g ∈ {1. . . Gs}.

Notice that the unweighted moment conditions of Equation (51) might eventually bring the first expectation
of this expression to zero (or close to zero). However, the second expectation above imposes a new set of
restrictions to those of Equation (51), meaning that the moments of (42) are indeed adding information to
those of Equation (51).

B Data processing details
Columns (1) to (4) of Table 7 illustrate the sequential process of data cleaning and exclusions due to issues
encountered in the matching and analysis of production and trade databases. Each column shows the number
of remaining products by sector after addressing the following issues: (1) Multiple product codification
mappings from trade to production databases; (2) Exclusion of products from PIA-Produto database with
less than three firms’ survey responses to ensure representative pricing; (3) Exclusion of products with fewer
than 50 database observations (following FLOR); (4) Exclusion of goods yielding negative values for σ in
more than 75% of bootstrap replications (as in FLOR). The final column presents the proportion of final
remaining products’ import value over the total import value for each sector.
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Table 7: Summary of data processing and exclusions by sector.

Number of remaining products by sector

(1) (2) (3) (4)
Sector Total

PIA/PAM
Prod.

Codif.
Match.

Firm Resp.
(≥ 3)

Obs.
Count
(≥ 50)

BS Filt.
(>75%
σ < 0)

Final
Import

Value (%)

Crop and Animal Production 47 43 41 15 15 50.02
Oil and Gas 5 4 1 1 1 59.01
Mining Extraction (Metal Ores) 33 15 11 6 6 69.45
Mining Extraction (Other) 70 36 26 19 18 12.60
Food Products 361 144 134 81 79 57.12
Beverages and Tobacco 45 17 15 13 13 83.63
Textiles 154 78 72 66 62 61.24
Wearing Apparel 94 35 31 29 28 19.08
Leather and Footwear 88 17 10 8 8 3.95
Wood Products 50 25 16 12 11 9.44
Paper and Paper Products 97 36 28 26 26 30.73
Printing and Reproduction of Recorded Media 60 8 1 1 1 0.15
Coke and Refined Petroleum Products 60 26 16 10 9 26.00
Chemical Products 530 433 348 282 280 48.24
Pharmaceuticals and Medicinal Chemical Products 135 35 18 11 10 4.77
Rubber and Plastic Products 123 46 42 38 38 45.79
Non-metallic Mineral Products 131 83 70 60 59 76.91
Basic Metals 141 86 67 58 55 43.91
Fabricated metal products 214 115 88 78 71 68.40
Computer and Electronic Products 178 119 88 83 71 57.55
Electrical Equipment 155 103 91 86 78 69.22
Machinery and Equipment (n.e.c) 424 262 218 193 138 32.21
Motor Vehicles, Trailers, and Semi-trailers 98 35 27 23 17 82.43
Other Transport Equipment 77 46 21 6 6 2.07
Other Manufacturing 233 95 44 41 40 47.24

All Sectors 3603 1942 1524 1246 1140 44.69

C Additional information about the simulations
C.1 Solution method
Balistreri et al. (2011) and Balistreri and Rutherford (2013) present a decomposition algorithm that addresses
the computational challenge of solving a non-linear equilibrium model with multiple regions, factors, and
commodities. The algorithm consists of two modules: a partial equilibrium (PE) model and a constant-returns
general equilibrium (GE) model. The PE model captures the industrial organization in some sectors and the
associated impact on productivity and prices, while the GE model determines relative prices and income.
The models are iterated in policy simulations, with the PE module determining the industrial structure and
the GE model establishing regional incomes and relative costs. The industrial structure is passed from the
PE to the GE module, and the structure of aggregate demand is passed back from the GE to the PE module,
until the models are mutually consistent and all conditions are satisfied. The authors argue that by using
the divide-and-conquer procedure, numerical issues that arise in quantitative analyses using models such as
Melitz (2003) are avoided.

The PE model is derived by removing and replacing certain equations in the GE model. Specifically, the
equations for the unit cost of the input basket (Equation 8) and the total expenditure on good g in region j
(Equation 24) are substituted with a reduced-form equation of constant elasticities for supply and demand,
as follows

Y g
i = Y

g

i

(
zg

i

zg
i

)µ

(78)

and

V g
j = V

g

j

(
P g

j

P
g

j

)1−η

, (79)
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where µ > 0 and η > 0 are the price elasticities of supply and demand, respectively.41 The variables Y
g

i ,
zg

i , V
g

j , and P
g

j represent the initial or benchmark values of the variables Y g
i , zg

i , V g
j , and P g

j , respectively.
Furthermore, in the PE model, no equations related to income and factor markets are taken into account.

In the GE model with constant returns to scale, the equations for zero cutoff productivity, free entry condition,
bilateral average firm productivity, and demand for variety φ are disregarded. Additionally, the bilateral
price equations and market equilibrium equations for goods are replaced with

P g
ij = τg

ij(1 + tg
ij)zg

ij (80)

and

Y g
i =

N∑
j=1

τg
ijV g

ij

P g
ij

. (81)

With these modifications, the GE model has a traditional Armington structure (Balistreri and Rutherford,
2013).

Given the definitions of the PE and GE models, Table 8 presents the variables and equations that comprise
the (non-linear) system for each module. All variables that depend on productivity are considered in terms of
the average firm.

Before detailing the four steps of the solution algorithm, it is worth noting that the Melitz structure was
assumed for all sectors of the extractive and manufacturing industries. That is, a conventional Armington
structure was assumed for the agriculture and services sectors. Regarding the services sector, we have chosen
not to assume a Melitz structure, as this sector has a high share of input consumption from its own sector.
This can exacerbate the issue of infinitely large effects, which would hinder the applicability of the model.
For instance, Jafari and Britz (2018) assume perfect competition for sectors that use at least 20% of their
own output as inputs.

The solution algorithm can be detailed in four steps. In the first step, the PE model is solved for each sector
with assumed heterogeneous firm structure. The solution of this model results in new values for the variables
Y g

i , zg
i , V g

j , and P g
j , as well as trade variables (V g

jj , V g
Fj

, V g
ij). The second step consists of recalibrating the

parameters βg
jj , βg

Fj
and κg

ij using equations 1, 2, 3 and 80 with the values obtained in the first step.42 In
the third step, the GE model is solved, and new values for the variables Y g

i , zg
i , V g

j , and P g
j are obtained.

In the fourth step, the solution values from the GE model are used to update the benchmark variables Y
g

i ,
zg

i , V
g

j , and P
g

j . In this fourth step, the benchmark variable values of the PE model are compared with the
values obtained from the GE model. If the difference is significant, the benchmark values are updated, and
the algorithm returns to step 1. Otherwise, convergence is considered achieved.

C.2 Armington elasticities and shape parameter for firm size distribution
The values of the parameters σg, ωg, and ζg used in the simulations are presented in Table 9. In addition
to our estimates, we also list other estimates that can be found in the literature. We use 2GMM estimates
for σg and ωg if the lower limit of the confidence interval is greater than one. Otherwise, we use the 2SLS
estimate by checking the same rule. If we don’t have a valid estimate for a sector, we use the “All Sectors”
valid estimates. In cases where the original estimates are at a more disaggregated level than that used in the
simulations, we choose to use the simple average of the estimates belonging to the same sector of Table 9.

C.3 Additional results

41The demand function is expressed in terms of expenditure rather than quantities.
42See Balistreri and Rutherford (2013) for more details on the calibration of these models.
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Table 8: Model equations

Equation Associated Variable

Partial Equilibrium Model
Expenditure on domestic goods (1) V g

jj

Expenditure on imported goods (2) V g
Fj

Bilateral expenditure (3) V g
ij

Demand for the average firm (4) cg
ij(φ̃)

Composite good price index (5) P g
j

Imports price index (6) P g
Fj

Bilateral price index (7) P g
ij

Input bundle supply (78) Y g
i

Optimal price (11) pgt
ij (φ̃)

Bilateral average firm productivity (17) φ̃g
ij

Zero cuttoff productivity condition (16) Ng
ij

Free entry condition (19) Mg
i

Total expenditure (79) V g
i

Input bundles market equilibrium (27) zg
i

General Equilibrium Model
Expenditure on domestic goods (1) V g

jj

Expenditure on imported goods (2) V g
Fj

Bilateral expenditure (3) V g
ij

Composite good price index (5) P g
j

Imports price index (6) P g
Fj

Bilateral price index (80) P g
ij

Unit cost of the input bundle (8) Y g
i

Income (21) Ii

Domestic absorption (22) V g,hh
i

Intermediate expenditure (23) V g,int
i

Total expenditure (24) V g
i

Production factor supply (25) lgf
i

Input bundle market equilibrium (81) zg
i

Production factor market equilibrium (28) wgf
i
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Table 9: Armington elasticities for Brazil used in simulations

Ours GTAP CFRT

Sector σg ωg ζg σg ωg ζg σg ωg ζg

Crop and animal production 6.51 1.80 2.17 3.52 1.76 1.75 5.8 2.90 1.75
Forestry and logging 6.51 1.80 1.79 2.86 1.43 1.75 5.8 2.90 1.75
Fishing and aquaculture 6.51 1.80 1.89 1.43 0.71 1.75 5.8 2.90 1.75
Mining and quarrying 2.53 2.24 1.48 7.53 3.76 1.75 8.3 4.15 1.75
Food products, beverages and tobacco 3.94 2.24 1.53 3.38 1.69 1.75 3.7 1.85 1.75
Textiles, wearing apparel and leather products 4.44 2.52 1.61 4.38 2.19 1.75 3.7 1.85 1.75
Wood products 3.72 2.37 1.71 3.89 1.94 1.75 3.7 1.85 1.75
Paper and paper products 4.01 2.17 1.51 3.37 1.69 1.75 3.7 1.85 1.75
Printing and reproduction of recorded media 3.26 2.24 1.92 3.37 1.69 1.75 3.7 1.85 1.75
Coke and refined petroleum products 2.50 2.24 1.31 2.40 1.20 1.75 3.7 1.85 1.75
Chemicals and chemical products 2.68 1.85 1.53 3.77 1.89 1.75 3.7 1.85 1.75
Pharamaceuticals and medical chemical products 4.05 2.89 1.35 3.77 1.89 1.75 3.7 1.85 1.75
Rubber and plastic products 3.29 2.27 1.53 3.77 1.89 1.75 3.7 1.85 1.75
Non-metallic mineral products 2.53 2.24 1.68 3.31 1.66 1.75 3.7 1.85 1.75
Basic metals 3.42 2.04 1.49 4.09 2.04 1.75 3.7 1.85 1.75
Fabricated metal products 3.13 2.64 1.76 4.29 2.14 1.75 3.7 1.85 1.75
Computer and electronic products 5.69 2.24 1.54 5.03 2.51 1.75 3.7 1.85 1.75
Electrical equipment 3.13 2.73 1.53 5.03 2.51 1.75 3.7 1.85 1.75
Machinery and equipment (n.e.c.) 3.13 1.88 1.58 4.63 2.31 1.75 3.7 1.85 1.75
Motor vehicles, trailers and semi-trailers 4.68 3.63 1.50 3.20 1.60 1.75 3.7 1.85 1.75
Other transport equipment 3.26 2.24 1.53 4.91 2.46 1.75 3.7 1.85 1.75
Other manufacturing 3.43 2.24 1.77 4.29 2.14 1.75 3.7 1.85 1.75
Repair and installation of machinery and equipment 3.36 2.24 1.85 4.29 2.14 1.75 3.7 1.85 1.75
Services 3.26 2.24 1.80 2.33 1.16 1.75 2.8 1.40 1.75

Note: "Ours" represents the elasticities presented in Tables 2 and 3. For some sectors, averages of some estimates
were considered for compatibility between the estimation sectors and the WIOD sectors. In the other columns, GTAP
and CFRT (Caliendo et al. (2023)) elasticities are presented considering the compatibility with the WIOD sectors.

Figure 4: Impact of input-output coefficient adjustment on sectoral production results.
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Note: In this analysis, simulations assuming perfect competition in all sectors were used and based on the Armington elasticities
obtained in this study. The 45-degree line represents a reference for evaluating the degree of change in simulation results.
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Table 10: Change in production for different sets of elasticities.

Imperfect Mobility (θf = 1) Perfect Mobility (θf = ∞)
Sector Ours GTAP CFRT Ours GTAP CFRT
Crop and Animal Production 2.00 1.20 1.46 3.09 1.25 1.59
Forestry and logging 0.40 0.19 0.31 0.31 -0.23 -0.18
Fishing and aquaculture 0.47 0.02 0.43 0.44 -0.38 0.02
Mining and quarrying 3.21 3.89 3.53 7.84 12.42 11.38
Food Products, Beverages and
Tobacco

3.32 2.89 2.78 4.09 2.83 2.65

Textiles, Wearing Apparel and
Leather Products

-5.12 -3.70 -2.61 -8.34 -6.49 -4.46

Wood Products 2.78 2.70 2.39 4.03 3.06 2.58
Paper and Paper products 3.55 3.25 3.03 4.78 3.34 3.00
Printing and Reproduction of
Recorded Media

0.04 0.48 0.44 -0.12 0.29 0.22

Coke and Refined Petroleum
Products

2.24 1.53 2.12 2.57 1.45 1.98

Chemicals and Chemical
products

0.90 1.35 1.12 0.96 0.80 0.55

Pharamaceuticals and Medical
Chemical Products

-0.37 0.27 0.13 -1.34 -0.54 -0.74

Rubber and Plastic products -1.12 0.01 -0.06 -1.64 -0.59 -0.67
Non-metallic Mineral Products -0.38 0.83 0.65 -0.74 0.57 0.29
Basic Metals 4.02 4.56 3.86 5.30 4.82 3.85
Fabricated Metal Products -4.03 -1.15 -0.73 -6.81 -2.47 -1.70
Computer and Electronic
Products

-0.87 -2.28 -1.20 -1.35 -4.15 -2.16

Electrical Equipment -6.75 -2.76 -1.33 -11.10 -5.50 -2.70
Machinery and Equipment
(n.e.c.)

-0.24 -0.53 -0.20 -0.72 -2.60 -1.52

Motor Vehicles, Trailers and
Semi-Trailers

-2.81 0.72 0.26 -4.47 0.31 -0.39

Other Transport Equipment 3.51 4.26 3.27 5.64 5.43 3.54
Other Manufacturing 2.31 2.28 1.86 3.28 2.62 1.98
Repair and Installation of
Machinery and Equipment

- - - - - -

Services 0.21 0.15 0.18 0.15 -0.02 0.00
Note: The parameter θf

i governs factor mobility between sectors. Each simulation was run using a different
set of elasticities. ’Ours’ means that the elasticities from Tables 2 and 3 were used. In GTAP columns, the
GTAP elasticities were considered for all regions. CFRT indicates that the elasticities from Caliendo et al.
(2023) were considered for all regions. Welfare is computed as the change in real income (Ii/P hh

j ). Real value
added is the change in total remuneration of production factors divided by the consumer price index (P hh

j ).
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